4weu: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Oral feed-based passive immunization can be a promising strategy to prolong maternal lactogenic immunity against postweaning infections. Enterotoxigenic Escherichia coli (ETEC)-caused postweaning diarrhea in piglets is one such infection that may be prevented by oral passive immunization and might avert recurrent economic losses to the pig farming industry. As a proof of principle, we designed anti-ETEC antibodies by fusing variable domains of llama heavy chain-only antibodies (VHHs) against ETEC to the Fc part of a porcine immunoglobulin (IgG or IgA) and expressed them in Arabidopsis thaliana seeds. In this way, four VHH-IgG and four VHH-IgA antibodies were produced to levels of about 3% and 0.2% of seed weight, respectively. Cotransformation of VHH-IgA with the porcine joining chain and secretory component led to the production of light-chain devoid, assembled multivalent dimeric, and secretory IgA-like antibodies. In vitro analysis of all of the antibody-producing seed extracts showed inhibition of bacterial binding to porcine gut villous enterocytes. However, in the piglet feed-challenge experiment, only the piglets receiving feed containing the VHH-IgA-based antibodies (dose 20 mg/d per pig) were protected. Piglets receiving the VHH-IgA-based antibodies in the feed showed a progressive decline in shedding of bacteria, significantly lower immune responses corroborating reduced exposure to the ETEC pathogen, and a significantly higher weight gain compared with the piglets receiving VHH-IgG producing (dose 80 mg/d per pig) or wild-type seeds. These results stress the importance of the antibody format in oral passive immunization and encourage future expression of these antibodies in crop seeds.
Enterotoxigenic Escherichia coli that cause neonatal and post-weaning diarrhea in piglets express F4 fimbriae to mediate attachment towards host receptors. Recently we described how llama single domain antibodies (VHHs) fused to IgA, produced in Arabidopsis thaliana seeds and fed to piglets resulted in a progressive decline in shedding of F4 positive ETEC bacteria. Here we present the structures of these inhibiting VHHs in complex with the major adhesive subunit FaeG. A conserved surface, distant from the lactose binding pocket, is targeted by these VHHs, highlighting the possibility of targeting epitopes on single-domain adhesins that are non-involved in receptor binding.


Orally fed seeds producing designer IgAs protect weaned piglets against enterotoxigenic Escherichia coli infection.,Virdi V, Coddens A, De Buck S, Millet S, Goddeeris BM, Cox E, De Greve H, Depicker A Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11809-14. doi:, 10.1073/pnas.1301975110. Epub 2013 Jun 25. PMID:23801763<ref>PMID:23801763</ref>
Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies.,Moonens K, Van den Broeck I, Okello E, Pardon E, De Kerpel M, Remaut H, De Greve H Vet Res. 2015 Feb 24;46(1):14. doi: 10.1186/s13567-015-0151-x. PMID:25828907<ref>PMID:25828907</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Revision as of 09:32, 15 April 2015

Co-complex structure of the F4 fimbrial adhesin FaeG variant ad with llama single domain antibody V3Co-complex structure of the F4 fimbrial adhesin FaeG variant ad with llama single domain antibody V3

Structural highlights

4weu is a 4 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[FAEG3_ECOLX] K88 major fimbrial subunit. Fimbriae (also called pili), are polar filaments radiating from the surface of the bacterium to a length of 0.5-1.5 micrometers and numbering 100-300 per cell. They enable bacteria to colonize the epithelium of specific host organs.

Publication Abstract from PubMed

Enterotoxigenic Escherichia coli that cause neonatal and post-weaning diarrhea in piglets express F4 fimbriae to mediate attachment towards host receptors. Recently we described how llama single domain antibodies (VHHs) fused to IgA, produced in Arabidopsis thaliana seeds and fed to piglets resulted in a progressive decline in shedding of F4 positive ETEC bacteria. Here we present the structures of these inhibiting VHHs in complex with the major adhesive subunit FaeG. A conserved surface, distant from the lactose binding pocket, is targeted by these VHHs, highlighting the possibility of targeting epitopes on single-domain adhesins that are non-involved in receptor binding.

Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies.,Moonens K, Van den Broeck I, Okello E, Pardon E, De Kerpel M, Remaut H, De Greve H Vet Res. 2015 Feb 24;46(1):14. doi: 10.1186/s13567-015-0151-x. PMID:25828907[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Moonens K, Van den Broeck I, Okello E, Pardon E, De Kerpel M, Remaut H, De Greve H. Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies. Vet Res. 2015 Feb 24;46(1):14. doi: 10.1186/s13567-015-0151-x. PMID:25828907 doi:http://dx.doi.org/10.1186/s13567-015-0151-x

4weu, resolution 2.61Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA