3phd: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==Crystal structure of human HDAC6 in complex with ubiquitin==
==Crystal structure of human HDAC6 in complex with ubiquitin==
<StructureSection load='3phd' size='340' side='right' caption='[[3phd]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
<StructureSection load='3phd' size='340' side='right' caption='[[3phd]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3phd]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PHD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3PHD FirstGlance]. <br>
<table><tr><td colspan='2'>[[3phd]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PHD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3PHD FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3c5k|3c5k]], [[3gv4|3gv4]], [[2znv|2znv]], [[3nhe|3nhe]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3c5k|3c5k]], [[3gv4|3gv4]], [[2znv|2znv]], [[3nhe|3nhe]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HDAC6, KIAA0901, JM21 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]), UBB, UBA52, UBCEP2, UBC, RPS27A, UBA80, UBCEP1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HDAC6, KIAA0901, JM21 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), UBB, UBA52, UBCEP2, UBC, RPS27A, UBA80, UBCEP1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Histone_deacetylase Histone deacetylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.1.98 3.5.1.98] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Histone_deacetylase Histone deacetylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.1.98 3.5.1.98] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3phd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3phd OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3phd RCSB], [http://www.ebi.ac.uk/pdbsum/3phd PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3phd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3phd OCA], [http://pdbe.org/3phd PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3phd RCSB], [http://www.ebi.ac.uk/pdbsum/3phd PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3phd ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
Line 19: Line 20:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 3phd" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 28: Line 30:
</StructureSection>
</StructureSection>
[[Category: Histone deacetylase]]
[[Category: Histone deacetylase]]
[[Category: Homo sapiens]]
[[Category: Human]]
[[Category: Dong, A]]
[[Category: Dong, A]]
[[Category: Kozieradzki, I]]
[[Category: Kozieradzki, I]]

Revision as of 14:26, 5 August 2016

Crystal structure of human HDAC6 in complex with ubiquitinCrystal structure of human HDAC6 in complex with ubiquitin

Structural highlights

3phd is a 8 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:HDAC6, KIAA0901, JM21 (HUMAN), UBB, UBA52, UBCEP2, UBC, RPS27A, UBA80, UBCEP1 (HUMAN)
Activity:Histone deacetylase, with EC number 3.5.1.98
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[HDAC6_HUMAN] Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Plays a central role in microtubule-dependent cell motility via deacetylation of tubulin.[1] [2] In addition to its protein deacetylase activity, plays a key role in the degradation of misfolded proteins: when misfolded proteins are too abundant to be degraded by the chaperone refolding system and the ubiquitin-proteasome, mediates the transport of misfolded proteins to a cytoplasmic juxtanuclear structure called aggresome. Probably acts as an adapter that recognizes polyubiquitinated misfolded proteins and target them to the aggresome, facilitating their clearance by autophagy.[3] [4] [UBB_HUMAN] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[5] [6]

Publication Abstract from PubMed

The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. Current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent accessible C-termini. The ubiquitin binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin C-termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C-termini within protein aggregates enables HDAC6 recognition and transport to the aggresome.

Protein aggregates are recruited to the aggresome by histone deacetylase 6 via unanchored ubiquitin C-termini.,Ouyang H, Ali YO, Ravichandran M, Dong A, Qiu W, Mackenzie F, Dhe-Paganon S, Arrowsmith CH, Zhai RG J Biol Chem. 2011 Nov 8. PMID:22069321[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature. 2002 May 23;417(6887):455-8. PMID:12024216 doi:http://dx.doi.org/10.1038/417455a
  2. Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol. 2007 Sep 10;178(6):1025-38. PMID:17846173 doi:10.1083/jcb.200611128
  3. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature. 2002 May 23;417(6887):455-8. PMID:12024216 doi:http://dx.doi.org/10.1038/417455a
  4. Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol. 2007 Sep 10;178(6):1025-38. PMID:17846173 doi:10.1083/jcb.200611128
  5. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. PMID:16543144 doi:S1097-2765(06)00120-1
  6. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. PMID:19754430 doi:10.1042/BST0370937
  7. Ouyang H, Ali YO, Ravichandran M, Dong A, Qiu W, Mackenzie F, Dhe-Paganon S, Arrowsmith CH, Zhai RG. Protein aggregates are recruited to the aggresome by histone deacetylase 6 via unanchored ubiquitin C-termini. J Biol Chem. 2011 Nov 8. PMID:22069321 doi:10.1074/jbc.M111.273730

3phd, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA