4bmr: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal Structure of Ribonucleotide Reductase apo-NrdF from Bacillus cereus (space group P21)== | ==Crystal Structure of Ribonucleotide Reductase apo-NrdF from Bacillus cereus (space group P21)== | ||
<StructureSection load='4bmr' size='340' side='right' caption='[[4bmr]], [[Resolution|resolution]] 2.00Å' scene=''> | <StructureSection load='4bmr' size='340' side='right' caption='[[4bmr]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4bmo|4bmo]], [[4bmp|4bmp]], [[4bmq|4bmq]], [[4bmt|4bmt]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4bmo|4bmo]], [[4bmp|4bmp]], [[4bmq|4bmq]], [[4bmt|4bmt]]</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ribonucleoside-diphosphate_reductase Ribonucleoside-diphosphate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.17.4.1 1.17.4.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ribonucleoside-diphosphate_reductase Ribonucleoside-diphosphate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.17.4.1 1.17.4.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4bmr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4bmr OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4bmr RCSB], [http://www.ebi.ac.uk/pdbsum/4bmr PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4bmr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4bmr OCA], [http://pdbe.org/4bmr PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4bmr RCSB], [http://www.ebi.ac.uk/pdbsum/4bmr PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4bmr ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 18: | Line 19: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 4bmr" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== |
Revision as of 21:19, 5 August 2016
Crystal Structure of Ribonucleotide Reductase apo-NrdF from Bacillus cereus (space group P21)Crystal Structure of Ribonucleotide Reductase apo-NrdF from Bacillus cereus (space group P21)
Structural highlights
Function[Q81G55_BACCR] Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (By similarity).[PIRNR:PIRNR000355] Publication Abstract from PubMedClass Ib ribonucleotide reductases (RNRs) use a dimetal-tyrosyl radical (Y*) cofactor in their NrdF (beta2) subunit to initiate ribonucleotide reduction in the NrdE (alpha2) subunit. Contrary to the diferric tyrosyl radical (Fe(III)2-Y*) cofactor, which can self-assemble from Fe(II)2-NrdF and O2, generation of the Mn(III)2-Y* cofactor requires the reduced form of a flavoprotein, NrdIhq, and O2 for its assembly. Here we report the 1.8 A resolution crystal structure of Bacillus cereus Fe2-NrdF in complex with NrdI. Compared to the previously solved Escherichia coli NrdI-Mn(II)2-NrdF structure, NrdI and NrdF binds similarly in Bacillus cereus through conserved core interactions. This protein-protein association seems to be unaffected by metal ion type bound in the NrdF subunit. The Bacillus cereus Mn(II)2-NrdF and Fe2-NrdF structures, also presented here, show conformational flexibility of residues surrounding the NrdF metal ion site. The movement of one of the metal-coordinating carboxylates is linked to the metal type present at the dimetal site and not associated with NrdI-NrdF binding. This carboxylate conformation seems to be vital for the water network connecting the NrdF dimetal site and the flavin in NrdI. From these observations, we suggest that metal-dependent variations in carboxylate coordination geometries are important for active Y* cofactor generation in class Ib RNRs. Additionally, we show that binding of NrdI to NrdF would structurally interfere with the suggested alpha2beta2 (NrdE-NrdF) holoenzyme formation, suggesting the potential requirement for NrdI dissociation before NrdE-NrdF assembly after NrdI-activation. The mode of interactions between the proteins involved in the class Ib RNR system is, however, not fully resolved. Crystal Structure of Bacillus cereus Class Ib Ribonucleotide Reductase Di-iron NrdF in Complex with NrdI.,Hammerstad M, Hersleth HP, Tomter AB, Rohr AK, Andersson KK ACS Chem Biol. 2014 Feb 21;9(2):526-37. doi: 10.1021/cb400757h. Epub 2013 Dec 11. PMID:24295378[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|