3c1c: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<StructureSection load='3c1c' size='340' side='right' caption='[[3c1c]], [[Resolution|resolution]] 3.15Å' scene=''> | <StructureSection load='3c1c' size='340' side='right' caption='[[3c1c]], [[Resolution|resolution]] 3.15Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3c1c]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3c1c]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog] and [http://en.wikipedia.org/wiki/Silurana_(xenopus)_tropicalis Silurana (xenopus) tropicalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3C1C OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3C1C FirstGlance]. <br> | ||
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=M2L:(2R)-2-AMINO-3-(2-DIMETHYLAMINOETHYLSULFANYL)PROPANOIC+ACID'>M2L</scene></td></tr> | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=M2L:(2R)-2-AMINO-3-(2-DIMETHYLAMINOETHYLSULFANYL)PROPANOIC+ACID'>M2L</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1kx5|1kx5]], [[1aoi|1aoi]], [[1zla|1zla]], [[1kx3|1kx3]], [[1f66|1f66]], [[1kx4|1kx4]], [[3c1b|3c1b]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1kx5|1kx5]], [[1aoi|1aoi]], [[1zla|1zla]], [[1kx3|1kx3]], [[1f66|1f66]], [[1kx4|1kx4]], [[3c1b|3c1b]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Histone H3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Histone H3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), Histone H4 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), Histone H2A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), hist2h2bf, TGas058p09.1-001 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8364 Silurana (Xenopus) tropicalis])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3c1c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3c1c OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3c1c RCSB], [http://www.ebi.ac.uk/pdbsum/3c1c PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3c1c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3c1c OCA], [http://pdbe.org/3c1c PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3c1c RCSB], [http://www.ebi.ac.uk/pdbsum/3c1c PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/ | [[http://www.uniprot.org/uniprot/H3C_XENLA H3C_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H2A1_XENLA H2A1_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H4_XENLA H4_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 18: | Line 18: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3c1c ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 28: | Line 28: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 3c1c" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 35: | Line 36: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: African clawed frog]] | ||
[[Category: Chodaparambil, J]] | [[Category: Chodaparambil, J]] | ||
[[Category: Hansen, J]] | [[Category: Hansen, J]] |
Revision as of 23:47, 7 February 2016
The effect of H3 K79 dimethylation and H4 K20 trimethylation on nucleosome and chromatin structureThe effect of H3 K79 dimethylation and H4 K20 trimethylation on nucleosome and chromatin structure
Structural highlights
Function[H3C_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [H2A1_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [H4_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHistone methylation regulates chromatin function dependent on the site and degree of the modification. In addition to creating binding sites for proteins, methylated lysine residues are likely to influence chromatin structure directly. Here we present crystal structures of nucleosomes reconstituted with methylated histones and investigate the folding behavior of resulting arrays. We demonstrate that dimethylation of histone H3 at lysine residue 79 locally alters the nucleosomal surface, whereas trimethylation of H4 at lysine residue 20 affects higher-order structure. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure.,Lu X, Simon MD, Chodaparambil JV, Hansen JC, Shokat KM, Luger K Nat Struct Mol Biol. 2008 Oct;15(10):1122-4. Epub 2008 Sep 14. PMID:18794842[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|