1qgb: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
|ACTIVITY= | |ACTIVITY= | ||
|GENE= | |GENE= | ||
|DOMAIN= | |||
|RELATEDENTRY= | |||
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1qgb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qgb OCA], [http://www.ebi.ac.uk/pdbsum/1qgb PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1qgb RCSB]</span> | |||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
Multiple sites within the N-terminal domain (1-5F1) of fibronectin have been implicated previously in fibronectin matrix assembly, heparin binding, and binding to cell surface proteins of pathogenic bacteria. The solution structure of 1F1(2)F1, the N-terminal F1 module pair from human fibronectin, has been determined using NMR spectroscopy. Both modules in the pair conform to the F1 consensus fold. In 4F1(5)F1, the only other F1 module pair structure available, there is a well-defined intermodule interface; in 1F1(2)F1, however, there is no detectable interface between the modules. Comparison of the backbone 15N-{1H} NOE values for both module pairs confirms that the longer intermodule sequence in 1F1(2)F1 is flexible and that the stabilization of the 4F1 C-D loop observed in 4F1(5)F1, as a result of the intermodule interface, is not observed in 1F1(2)F1. | Multiple sites within the N-terminal domain (1-5F1) of fibronectin have been implicated previously in fibronectin matrix assembly, heparin binding, and binding to cell surface proteins of pathogenic bacteria. The solution structure of 1F1(2)F1, the N-terminal F1 module pair from human fibronectin, has been determined using NMR spectroscopy. Both modules in the pair conform to the F1 consensus fold. In 4F1(5)F1, the only other F1 module pair structure available, there is a well-defined intermodule interface; in 1F1(2)F1, however, there is no detectable interface between the modules. Comparison of the backbone 15N-{1H} NOE values for both module pairs confirms that the longer intermodule sequence in 1F1(2)F1 is flexible and that the stabilization of the 4F1 C-D loop observed in 4F1(5)F1, as a result of the intermodule interface, is not observed in 1F1(2)F1. | ||
==About this Structure== | ==About this Structure== | ||
Line 32: | Line 32: | ||
[[Category: fibronectin type 1 module pair]] | [[Category: fibronectin type 1 module pair]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 23:13:11 2008'' |
Revision as of 23:13, 30 March 2008
| |||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
SOLUTION STRUCTURE OF THE N-TERMINAL F1 MODULE PAIR FROM HUMAN FIBRONECTIN
OverviewOverview
Multiple sites within the N-terminal domain (1-5F1) of fibronectin have been implicated previously in fibronectin matrix assembly, heparin binding, and binding to cell surface proteins of pathogenic bacteria. The solution structure of 1F1(2)F1, the N-terminal F1 module pair from human fibronectin, has been determined using NMR spectroscopy. Both modules in the pair conform to the F1 consensus fold. In 4F1(5)F1, the only other F1 module pair structure available, there is a well-defined intermodule interface; in 1F1(2)F1, however, there is no detectable interface between the modules. Comparison of the backbone 15N-{1H} NOE values for both module pairs confirms that the longer intermodule sequence in 1F1(2)F1 is flexible and that the stabilization of the 4F1 C-D loop observed in 4F1(5)F1, as a result of the intermodule interface, is not observed in 1F1(2)F1.
About this StructureAbout this Structure
1QGB is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
ReferenceReference
Solution structure of the N-terminal F1 module pair from human fibronectin., Potts JR, Bright JR, Bolton D, Pickford AR, Campbell ID, Biochemistry. 1999 Jun 29;38(26):8304-12. PMID:10387076
Page seeded by OCA on Sun Mar 30 23:13:11 2008