3mdl: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3mdl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3mdl OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3mdl RCSB], [http://www.ebi.ac.uk/pdbsum/3mdl PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3mdl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3mdl OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3mdl RCSB], [http://www.ebi.ac.uk/pdbsum/3mdl PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/PGH2_MOUSE PGH2_MOUSE]] Mediates the formation of prostaglandins from arachidonate. May have a role as a major mediator of inflammation and/or a role for prostanoid signaling in activity-dependent plasticity.<ref>PMID:12925531</ref> <ref>PMID:20463020</ref> <ref>PMID:20810665</ref> <ref>PMID:21489986</ref> | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == |
Revision as of 23:03, 24 December 2014
X-ray crystal structure of 1-arachidonoyl glycerol bound to the cyclooxygenase channel of cyclooxygenase-2X-ray crystal structure of 1-arachidonoyl glycerol bound to the cyclooxygenase channel of cyclooxygenase-2
Structural highlights
Function[PGH2_MOUSE] Mediates the formation of prostaglandins from arachidonate. May have a role as a major mediator of inflammation and/or a role for prostanoid signaling in activity-dependent plasticity.[1] [2] [3] [4] Publication Abstract from PubMedThe cyclooxygenases (COX-1 and COX-2) oxygenate arachidonic acid (AA) in the committed step of prostaglandin biogenesis. Substitutions of I434V, H513R, and I523V constitute the only differences in residues lining the cyclooxygenase channel between COX-1 and COX-2. These changes create a hydrophobic pocket in COX-2, with Arg-513 located at the base of the pocket, which has been exploited in the design of COX-2-selective inhibitors. Previous studies have shown that COX-2, but not COX-1, can oxygenate endocannabinoid substrates, including 2-arachidonoyl glycerol (2-AG). To investigate the isoform-specific structural basis of endocannabinoid binding to COX-2, we determined the crystal structure of the 2-AG isomer 1-arachidonoyl glycerol (1-AG) in complex with wild type and R513H murine (mu) COX-2 to 2.2 and 2.35 A, respectively, and R513H muCOX-2 in complex with AA to 2.45 A resolution. The 2,3-dihydroxypropyl moiety of 1-AG binds near the opening of the cyclooxygenase channel in the space vacated by the movement of the Leu-531 side chain, validating our previous hypothesis implicating the flexibility of the Leu-531 side chain as a determinant for the ability of COX-2 to oxygenate endocannabinoid substrates. Functional analyses carried out to compliment our structural findings indicated that Y355F and R513H muCOX-2 constructs had no effect on the oxygenation of 1-AG and 2-AG, whereas substitutions that resulted in a shortened side chain for Leu-531 had only modest effects. Both AA and 1-AG bind to R513H muCOX-2 in conformations similar to those observed in the co-crystal structures of these substrates with wild type enzyme. The structural basis of endocannabinoid oxygenation by cyclooxygenase-2.,Vecchio AJ, Malkowski MG J Biol Chem. 2011 Jun 10;286(23):20736-45. Epub 2011 Apr 13. PMID:21489986[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|