2lrk: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2lrk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lrk OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2lrk RCSB], [http://www.ebi.ac.uk/pdbsum/2lrk PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2lrk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lrk OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2lrk RCSB], [http://www.ebi.ac.uk/pdbsum/2lrk PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/PTHP_ECOLI PTHP_ECOLI]] General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the permease (enzymes II/III). [[http://www.uniprot.org/uniprot/PTQA_ECOLI PTQA_ECOLI]] The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in N,N'-diacetylchitobiose transport.<ref>PMID:10913117</ref> | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == |
Revision as of 19:12, 24 December 2014
Solution Structures of the IIA(Chitobiose)-HPr complex of the N,N'-DiacetylchitobioseSolution Structures of the IIA(Chitobiose)-HPr complex of the N,N'-Diacetylchitobiose
Structural highlights
Function[PTHP_ECOLI] General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the permease (enzymes II/III). [PTQA_ECOLI] The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in N,N'-diacetylchitobiose transport.[1] Publication Abstract from PubMedThe solution structure of the complex of enzyme IIA of the N,N-diacetylchitobiose (Chb) transporter with the histidine phosphocarier protein HPr has been solved by NMR. The IIAChb-HPr complex completes the structure elucidation of representative cytoplasmic complexes for all four sugar branches of the bacterial phosphoryl transfer system (PTS). The active site His-89 of IIAChb was mutated to Glu to mimic the phosphorylated state. IIAChb(H89E) and HPr form a weak complex with a KD of ~0.7 mM. The interacting binding surfaces, concave for IIAChb and convex for HPr, complement each other in terms of shape, residue type and charge distribution, with predominantly hydrophobic residues, interspersed by some uncharged polar residues, located centrally, and polar and charged residues at the periphery. The active site histidine of HPr, His15, is buried within the active site cleft of IIAChb formed at the interface of two adjacent subunits of the IIAChb trimer, thereby coming into close proximity with the active site residue, H89E, of IIAChb. A His89-P-His15 pentacoordinate phosphoryl transition state can readily be modeled without necessitating any significant conformational changes, thereby facilitating rapid phosphoryl transfer. Comparison of the IIAChb-HPr complex with the IIAChb-IIBChb complex, as well as with other cytoplasmic complexes of the PTS, highlights a unifying mechanism for recognition of structurally diverse partners. This involves generating similar binding surfaces from entirely different underlying structural elements, large interaction surfaces coupled with extensive redundancy, and side chain conformational plasticity to optimize diverse sets of intermolecular interactions. Solution structure of the IIAChitobiose-HPr complex of the N,N'-Diacetylchitobiose Branch of the Escherichia coli Phosphotransferase system.,Jung YS, Cai M, Clore GM J Biol Chem. 2012 May 16. PMID:22593574[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|