1jwg: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1jwg]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JWG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1JWG FirstGlance]. <br> | <table><tr><td colspan='2'>[[1jwg]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JWG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1JWG FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1jwf|1jwf]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1jwf|1jwf]]</td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1jwg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jwg OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1jwg RCSB], [http://www.ebi.ac.uk/pdbsum/1jwg PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1jwg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jwg OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1jwg RCSB], [http://www.ebi.ac.uk/pdbsum/1jwg PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/GGA1_HUMAN GGA1_HUMAN]] Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (AC-LL) motif.<ref>PMID:11301005</ref> [[http://www.uniprot.org/uniprot/MPRI_HUMAN MPRI_HUMAN]] Transport of phosphorylated lysosomal enzymes from the Golgi complex and the cell surface to lysosomes. Lysosomal enzymes bearing phosphomannosyl residues bind specifically to mannose-6-phosphate receptors in the Golgi apparatus and the resulting receptor-ligand complex is transported to an acidic prelyosomal compartment where the low pH mediates the dissociation of the complex. This receptor also binds IGF2. Acts as a positive regulator of T-cell coactivation, by binding DPP4.<ref>PMID:10900005</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 30: | Line 32: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Earnest, T | [[Category: Earnest, T]] | ||
[[Category: Igarashi, N | [[Category: Igarashi, N]] | ||
[[Category: Kato, R | [[Category: Kato, R]] | ||
[[Category: Kawasaki, M | [[Category: Kawasaki, M]] | ||
[[Category: Matsugaki, N | [[Category: Matsugaki, N]] | ||
[[Category: Nakayama, K | [[Category: Nakayama, K]] | ||
[[Category: Nogi, T | [[Category: Nogi, T]] | ||
[[Category: Shiba, T | [[Category: Shiba, T]] | ||
[[Category: Suzuki, M | [[Category: Suzuki, M]] | ||
[[Category: Takatsu, H | [[Category: Takatsu, H]] | ||
[[Category: Wakatsuki, S | [[Category: Wakatsuki, S]] | ||
[[Category: Protein transport-protein binding complex]] | [[Category: Protein transport-protein binding complex]] | ||
[[Category: Protein-peptide complex]] | [[Category: Protein-peptide complex]] | ||
[[Category: Super helix]] | [[Category: Super helix]] |
Revision as of 19:08, 25 December 2014
VHS Domain of human GGA1 complexed with cation-independent M6PR C-terminal PeptideVHS Domain of human GGA1 complexed with cation-independent M6PR C-terminal Peptide
Structural highlights
Function[GGA1_HUMAN] Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (AC-LL) motif.[1] [MPRI_HUMAN] Transport of phosphorylated lysosomal enzymes from the Golgi complex and the cell surface to lysosomes. Lysosomal enzymes bearing phosphomannosyl residues bind specifically to mannose-6-phosphate receptors in the Golgi apparatus and the resulting receptor-ligand complex is transported to an acidic prelyosomal compartment where the low pH mediates the dissociation of the complex. This receptor also binds IGF2. Acts as a positive regulator of T-cell coactivation, by binding DPP4.[2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedGGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-interacting proteins) are critical for the transport of soluble proteins from the trans-Golgi network (TGN) to endosomes/lysosomes by means of interactions with TGN-sorting receptors, ADP-ribosylation factor (ARF), and clathrin. The amino-terminal VHS domains of GGAs form complexes with the cytoplasmic domains of sorting receptors by recognizing acidic-cluster dileucine (ACLL) sequences. Here we report the X-ray structure of the GGA1 VHS domain alone, and in complex with the carboxy-terminal peptide of cation-independent mannose 6-phosphate receptor containing an ACLL sequence. The VHS domain forms a super helix with eight alpha-helices, similar to the VHS domains of TOM1 and Hrs. Unidirectional movements of helices alpha6 and alpha8, and some of their side chains, create a set of electrostatic and hydrophobic interactions for correct recognition of the ACLL peptide. This recognition mechanism provides the basis for regulation of protein transport from the TGN to endosomes/lysosomes, which is shared by sortilin and low-density lipoprotein receptor-related protein. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1.,Shiba T, Takatsu H, Nogi T, Matsugaki N, Kawasaki M, Igarashi N, Suzuki M, Kato R, Earnest T, Nakayama K, Wakatsuki S Nature. 2002 Feb 21;415(6874):937-41. PMID:11859376[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|