1iy4: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
|SITE=  
|SITE=  
|LIGAND=  
|LIGAND=  
|ACTIVITY= [http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17]  
|ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span>
|GENE=  
|GENE=  
|DOMAIN=
|RELATEDENTRY=[[1iy3|1IY3]]
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1iy4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1iy4 OCA], [http://www.ebi.ac.uk/pdbsum/1iy4 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1iy4 RCSB]</span>
}}
}}


Line 14: Line 17:
==Overview==
==Overview==
The three-dimensional solution structures of human lysozyme were determined at 35 and 4 degrees C using the heteronuclear multidimensional NMR spectroscopy, which were compared with each other to clarify the structural response of this enzyme to lowering of the temperature. Together with the data of the temperature dependence experiments of the lytic activity against Micrococcus luteus, we consider the implication of the observed structural change for the low-temperature-induced reduction of the activity of human lysozyme. The structures of human lysozyme determined at the two temperatures are found to be similar, both of which comprise four alpha-helices (A- to D-helices) and three antiparallel beta-strands (beta(1)-beta(3)), leading to the constructions of the alpha- and beta-domains as previously identified in the X-ray crystal structure. A significant structural change was observed for the "active site lobe" comprising the loop region connecting C- and D-helices and the following D-helix, which moves toward the active site cleft located between the alpha- and beta-domains so as to obstruct the cleft according to the temperature lowering. It further appeared that the total volume as well as the accessible surface area of human lysozyme decreases with lowering of the temperature, suggesting that the internal cavity of this enzyme shrinks under low temperature environment. Because in human lysozyme the region comprising the active site lobe is responsible for turnover of the enzymatic reaction against the substrate, the low-temperature-induced structural change of the active site lobe presumably controls the efficiency of the lytic activity under low temperatures.
The three-dimensional solution structures of human lysozyme were determined at 35 and 4 degrees C using the heteronuclear multidimensional NMR spectroscopy, which were compared with each other to clarify the structural response of this enzyme to lowering of the temperature. Together with the data of the temperature dependence experiments of the lytic activity against Micrococcus luteus, we consider the implication of the observed structural change for the low-temperature-induced reduction of the activity of human lysozyme. The structures of human lysozyme determined at the two temperatures are found to be similar, both of which comprise four alpha-helices (A- to D-helices) and three antiparallel beta-strands (beta(1)-beta(3)), leading to the constructions of the alpha- and beta-domains as previously identified in the X-ray crystal structure. A significant structural change was observed for the "active site lobe" comprising the loop region connecting C- and D-helices and the following D-helix, which moves toward the active site cleft located between the alpha- and beta-domains so as to obstruct the cleft according to the temperature lowering. It further appeared that the total volume as well as the accessible surface area of human lysozyme decreases with lowering of the temperature, suggesting that the internal cavity of this enzyme shrinks under low temperature environment. Because in human lysozyme the region comprising the active site lobe is responsible for turnover of the enzymatic reaction against the substrate, the low-temperature-induced structural change of the active site lobe presumably controls the efficiency of the lytic activity under low temperatures.
==Disease==
Known diseases associated with this structure: Amyloidosis, renal OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=153450 153450]], Microphthalmia, syndromic 1 OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=309800 309800]]


==About this Structure==
==About this Structure==
Line 37: Line 37:
[[Category: hydrolase]]
[[Category: hydrolase]]


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 11:56:29 2008''
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 21:26:19 2008''

Revision as of 21:26, 30 March 2008

File:1iy4.jpg


PDB ID 1iy4

Drag the structure with the mouse to rotate
Activity: Lysozyme, with EC number 3.2.1.17
Related: 1IY3


Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



Solution structure of the human lysozyme at 35 degree C


OverviewOverview

The three-dimensional solution structures of human lysozyme were determined at 35 and 4 degrees C using the heteronuclear multidimensional NMR spectroscopy, which were compared with each other to clarify the structural response of this enzyme to lowering of the temperature. Together with the data of the temperature dependence experiments of the lytic activity against Micrococcus luteus, we consider the implication of the observed structural change for the low-temperature-induced reduction of the activity of human lysozyme. The structures of human lysozyme determined at the two temperatures are found to be similar, both of which comprise four alpha-helices (A- to D-helices) and three antiparallel beta-strands (beta(1)-beta(3)), leading to the constructions of the alpha- and beta-domains as previously identified in the X-ray crystal structure. A significant structural change was observed for the "active site lobe" comprising the loop region connecting C- and D-helices and the following D-helix, which moves toward the active site cleft located between the alpha- and beta-domains so as to obstruct the cleft according to the temperature lowering. It further appeared that the total volume as well as the accessible surface area of human lysozyme decreases with lowering of the temperature, suggesting that the internal cavity of this enzyme shrinks under low temperature environment. Because in human lysozyme the region comprising the active site lobe is responsible for turnover of the enzymatic reaction against the substrate, the low-temperature-induced structural change of the active site lobe presumably controls the efficiency of the lytic activity under low temperatures.

About this StructureAbout this Structure

1IY4 is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.

ReferenceReference

Low-temperature-induced structural changes in human lysozyme elucidated by three-dimensional NMR spectroscopy., Kumeta H, Miura A, Kobashigawa Y, Miura K, Oka C, Nemoto N, Nitta K, Tsuda S, Biochemistry. 2003 Feb 11;42(5):1209-16. PMID:12564923

Page seeded by OCA on Sun Mar 30 21:26:19 2008

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA