2vic: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2vic]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Helicobacter_pylori Helicobacter pylori]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VIC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2VIC FirstGlance]. <br> | <table><tr><td colspan='2'>[[2vic]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Helicobacter_pylori Helicobacter pylori]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VIC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2VIC FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2a6m|2a6m]], [[2a6o|2a6o]], [[2vju|2vju]], [[2vjv|2vjv]], [[2vhg|2vhg]], [[2vih|2vih]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2a6m|2a6m]], [[2a6o|2a6o]], [[2vju|2vju]], [[2vjv|2vjv]], [[2vhg|2vhg]], [[2vih|2vih]]</td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2vic FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2vic OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2vic RCSB], [http://www.ebi.ac.uk/pdbsum/2vic PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2vic FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2vic OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2vic RCSB], [http://www.ebi.ac.uk/pdbsum/2vic PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 30: | Line 30: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Helicobacter pylori]] | [[Category: Helicobacter pylori]] | ||
[[Category: Barabas, O | [[Category: Barabas, O]] | ||
[[Category: Chandler, M | [[Category: Chandler, M]] | ||
[[Category: Dyda, F | [[Category: Dyda, F]] | ||
[[Category: Guynet, C | [[Category: Guynet, C]] | ||
[[Category: Hickman, A B | [[Category: Hickman, A B]] | ||
[[Category: Ronning, D R | [[Category: Ronning, D R]] | ||
[[Category: Ton-Hoang, B | [[Category: Ton-Hoang, B]] | ||
[[Category: Dna stem loop]] | [[Category: Dna stem loop]] | ||
[[Category: Dna-binding protein]] | [[Category: Dna-binding protein]] |
Revision as of 16:45, 19 January 2015
CRYSTAL STRUCTURE OF THE ISHP608 TRANSPOSASE IN COMPLEX WITH LEFT END 26-MER DNA AND MANGANESECRYSTAL STRUCTURE OF THE ISHP608 TRANSPOSASE IN COMPLEX WITH LEFT END 26-MER DNA AND MANGANESE
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe smallest known DNA transposases are those from the IS200/IS605 family. Here we show how the interplay of protein and DNA activates TnpA, the Helicobacter pylori IS608 transposase, for catalysis. First, transposon end binding causes a conformational change that aligns catalytically important protein residues within the active site. Subsequent precise cleavage at the left and right ends, the steps that liberate the transposon from its donor site, does not involve a site-specific DNA-binding domain. Rather, cleavage site recognition occurs by complementary base pairing with a TnpA-bound subterminal transposon DNA segment. Thus, the enzyme active site is constructed from elements of both protein and DNA, reminiscent of the interdependence of protein and RNA in the ribosome. Our structural results explain why the transposon ends are asymmetric and how the transposon selects a target site for integration, and they allow us to propose a molecular model for the entire transposition reaction. Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection.,Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F Cell. 2008 Jan 25;132(2):208-20. PMID:18243097[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|