2vic: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2vic]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Helicobacter_pylori Helicobacter pylori]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VIC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2VIC FirstGlance]. <br>
<table><tr><td colspan='2'>[[2vic]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Helicobacter_pylori Helicobacter pylori]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VIC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2VIC FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene><br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2a6m|2a6m]], [[2a6o|2a6o]], [[2vju|2vju]], [[2vjv|2vjv]], [[2vhg|2vhg]], [[2vih|2vih]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2a6m|2a6m]], [[2a6o|2a6o]], [[2vju|2vju]], [[2vjv|2vjv]], [[2vhg|2vhg]], [[2vih|2vih]]</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2vic FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2vic OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2vic RCSB], [http://www.ebi.ac.uk/pdbsum/2vic PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2vic FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2vic OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2vic RCSB], [http://www.ebi.ac.uk/pdbsum/2vic PDBsum]</span></td></tr>
<table>
</table>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 30: Line 30:
</StructureSection>
</StructureSection>
[[Category: Helicobacter pylori]]
[[Category: Helicobacter pylori]]
[[Category: Barabas, O.]]
[[Category: Barabas, O]]
[[Category: Chandler, M.]]
[[Category: Chandler, M]]
[[Category: Dyda, F.]]
[[Category: Dyda, F]]
[[Category: Guynet, C.]]
[[Category: Guynet, C]]
[[Category: Hickman, A B.]]
[[Category: Hickman, A B]]
[[Category: Ronning, D R.]]
[[Category: Ronning, D R]]
[[Category: Ton-Hoang, B.]]
[[Category: Ton-Hoang, B]]
[[Category: Dna stem loop]]
[[Category: Dna stem loop]]
[[Category: Dna-binding protein]]
[[Category: Dna-binding protein]]

Revision as of 16:45, 19 January 2015

CRYSTAL STRUCTURE OF THE ISHP608 TRANSPOSASE IN COMPLEX WITH LEFT END 26-MER DNA AND MANGANESECRYSTAL STRUCTURE OF THE ISHP608 TRANSPOSASE IN COMPLEX WITH LEFT END 26-MER DNA AND MANGANESE

Structural highlights

2vic is a 4 chain structure with sequence from Helicobacter pylori. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The smallest known DNA transposases are those from the IS200/IS605 family. Here we show how the interplay of protein and DNA activates TnpA, the Helicobacter pylori IS608 transposase, for catalysis. First, transposon end binding causes a conformational change that aligns catalytically important protein residues within the active site. Subsequent precise cleavage at the left and right ends, the steps that liberate the transposon from its donor site, does not involve a site-specific DNA-binding domain. Rather, cleavage site recognition occurs by complementary base pairing with a TnpA-bound subterminal transposon DNA segment. Thus, the enzyme active site is constructed from elements of both protein and DNA, reminiscent of the interdependence of protein and RNA in the ribosome. Our structural results explain why the transposon ends are asymmetric and how the transposon selects a target site for integration, and they allow us to propose a molecular model for the entire transposition reaction.

Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection.,Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F Cell. 2008 Jan 25;132(2):208-20. PMID:18243097[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F. Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection. Cell. 2008 Jan 25;132(2):208-20. PMID:18243097 doi:http://dx.doi.org/10.1016/j.cell.2007.12.029

2vic, resolution 2.35Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA