1b7s: Difference between revisions

No edit summary
No edit summary
Line 4: Line 4:
|PDB= 1b7s |SIZE=350|CAPTION= <scene name='initialview01'>1b7s</scene>, resolution 2.&Aring;
|PDB= 1b7s |SIZE=350|CAPTION= <scene name='initialview01'>1b7s</scene>, resolution 2.&Aring;
|SITE=  
|SITE=  
|LIGAND= <scene name='pdbligand=NA:SODIUM ION'>NA</scene>
|LIGAND= <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>
|ACTIVITY=  
|ACTIVITY=  
|GENE=  
|GENE=  
|DOMAIN=
|RELATEDENTRY=
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1b7s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1b7s OCA], [http://www.ebi.ac.uk/pdbsum/1b7s PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1b7s RCSB]</span>
}}
}}


Line 14: Line 17:
==Overview==
==Overview==
The stability profile of mutant protein (SPMP) (Ota,M., Kanaya,S. and Nishikawa,K., 1995, J. Mol. Biol., 248, 733-738) estimates the changes in conformational stability due to single amino acid substitutions using a pseudo-energy potential developed for evaluating structure-sequence compatibility in the structure prediction method, the 3D-1D compatibility evaluation. Nine mutant human lysozymes expected to significantly increase in stability from SPMP were constructed, in order to experimentally verify the reliability of SPMP. The thermodynamic parameters for denaturation and crystal structures of these mutant proteins were determined. One mutant protein was stabilized as expected, compared with the wild-type protein. However, the others were not stabilized even though the structural changes were subtle, indicating that SPMP overestimates the increase in stability or underestimates negative effects due to substitution. The stability changes in the other mutant human lysozymes previously reported were also analyzed by SPMP. The correlation of the stability changes between the experiment and prediction depended on the types of substitution: there were some correlations for proline mutants and cavity-creating mutants, but no correlation for mutants related to side-chain hydrogen bonds. The present results may indicate some additional factors that should be considered in the calculation of SPMP, suggesting that SPMP can be refined further.
The stability profile of mutant protein (SPMP) (Ota,M., Kanaya,S. and Nishikawa,K., 1995, J. Mol. Biol., 248, 733-738) estimates the changes in conformational stability due to single amino acid substitutions using a pseudo-energy potential developed for evaluating structure-sequence compatibility in the structure prediction method, the 3D-1D compatibility evaluation. Nine mutant human lysozymes expected to significantly increase in stability from SPMP were constructed, in order to experimentally verify the reliability of SPMP. The thermodynamic parameters for denaturation and crystal structures of these mutant proteins were determined. One mutant protein was stabilized as expected, compared with the wild-type protein. However, the others were not stabilized even though the structural changes were subtle, indicating that SPMP overestimates the increase in stability or underestimates negative effects due to substitution. The stability changes in the other mutant human lysozymes previously reported were also analyzed by SPMP. The correlation of the stability changes between the experiment and prediction depended on the types of substitution: there were some correlations for proline mutants and cavity-creating mutants, but no correlation for mutants related to side-chain hydrogen bonds. The present results may indicate some additional factors that should be considered in the calculation of SPMP, suggesting that SPMP can be refined further.
==Disease==
Known diseases associated with this structure: Amyloidosis, renal OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=153450 153450]], Microphthalmia, syndromic 1 OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=309800 309800]]


==About this Structure==
==About this Structure==
Line 31: Line 31:
[[Category: Yamagata, Y.]]
[[Category: Yamagata, Y.]]
[[Category: Yutani, K.]]
[[Category: Yutani, K.]]
[[Category: NA]]
[[Category: human lysozyme]]
[[Category: human lysozyme]]
[[Category: mutant stability]]
[[Category: mutant stability]]


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 10:07:25 2008''
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 18:55:22 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA