1aw0: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
|SITE= | |SITE= | ||
|LIGAND= | |LIGAND= | ||
|ACTIVITY= [http://en.wikipedia.org/wiki/Hydrogen/potassium-exchanging_ATPase Hydrogen/potassium-exchanging ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.10 3.6.3.10] | |ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Hydrogen/potassium-exchanging_ATPase Hydrogen/potassium-exchanging ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.10 3.6.3.10] </span> | ||
|GENE= | |GENE= | ||
|DOMAIN= | |||
|RELATEDENTRY= | |||
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1aw0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1aw0 OCA], [http://www.ebi.ac.uk/pdbsum/1aw0 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1aw0 RCSB]</span> | |||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
Menkes disease is an X-linked disorder in copper transport that results in death during early childhood. The solution structures of both apo and Ag(I)-bound forms of the fourth metal-binding domain (mbd4) from the Menkes copper-transporting ATPase have been solved. The 72-residue mbd4 has a ferredoxin-like beta alpha beta beta alpha beta fold. Structural differences between the two forms are limited to the metal-binding loop, which is disordered in the apo structure but well ordered in the Ag(I)-bound structure. Ag(I) binds in a linear bicoordinate manner to the two Cys residues of the conserved GMTCxxC motif; Cu(I) likely coordinates in a similar manner. Menkes mbd4 is thus the first bicoordinate copper-binding protein to be characterized structurally. Sequence comparisons with other heavy-metal-binding domains reveal a conserved hydrophobic core and metal-binding motif. | Menkes disease is an X-linked disorder in copper transport that results in death during early childhood. The solution structures of both apo and Ag(I)-bound forms of the fourth metal-binding domain (mbd4) from the Menkes copper-transporting ATPase have been solved. The 72-residue mbd4 has a ferredoxin-like beta alpha beta beta alpha beta fold. Structural differences between the two forms are limited to the metal-binding loop, which is disordered in the apo structure but well ordered in the Ag(I)-bound structure. Ag(I) binds in a linear bicoordinate manner to the two Cys residues of the conserved GMTCxxC motif; Cu(I) likely coordinates in a similar manner. Menkes mbd4 is thus the first bicoordinate copper-binding protein to be characterized structurally. Sequence comparisons with other heavy-metal-binding domains reveal a conserved hydrophobic core and metal-binding motif. | ||
==About this Structure== | ==About this Structure== | ||
Line 32: | Line 32: | ||
[[Category: hydrolase]] | [[Category: hydrolase]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 18:48:33 2008'' |
Revision as of 18:48, 30 March 2008
| |||||||
Activity: | Hydrogen/potassium-exchanging ATPase, with EC number 3.6.3.10 | ||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
FOURTH METAL-BINDING DOMAIN OF THE MENKES COPPER-TRANSPORTING ATPASE, NMR, 20 STRUCTURES
OverviewOverview
Menkes disease is an X-linked disorder in copper transport that results in death during early childhood. The solution structures of both apo and Ag(I)-bound forms of the fourth metal-binding domain (mbd4) from the Menkes copper-transporting ATPase have been solved. The 72-residue mbd4 has a ferredoxin-like beta alpha beta beta alpha beta fold. Structural differences between the two forms are limited to the metal-binding loop, which is disordered in the apo structure but well ordered in the Ag(I)-bound structure. Ag(I) binds in a linear bicoordinate manner to the two Cys residues of the conserved GMTCxxC motif; Cu(I) likely coordinates in a similar manner. Menkes mbd4 is thus the first bicoordinate copper-binding protein to be characterized structurally. Sequence comparisons with other heavy-metal-binding domains reveal a conserved hydrophobic core and metal-binding motif.
About this StructureAbout this Structure
1AW0 is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
ReferenceReference
Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase., Gitschier J, Moffat B, Reilly D, Wood WI, Fairbrother WJ, Nat Struct Biol. 1998 Jan;5(1):47-54. PMID:9437429
Page seeded by OCA on Sun Mar 30 18:48:33 2008