1a01: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
|PDB= 1a01 |SIZE=350|CAPTION= <scene name='initialview01'>1a01</scene>, resolution 1.8Å | |PDB= 1a01 |SIZE=350|CAPTION= <scene name='initialview01'>1a01</scene>, resolution 1.8Å | ||
|SITE= | |SITE= | ||
|LIGAND= <scene name='pdbligand=HEM:PROTOPORPHYRIN IX CONTAINING FE'>HEM</scene> | |LIGAND= <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene> | ||
|ACTIVITY= | |ACTIVITY= | ||
|GENE= HUMAN BETA GLOBIN ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]) | |GENE= HUMAN BETA GLOBIN ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]) | ||
|DOMAIN= | |||
|RELATEDENTRY= | |||
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1a01 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a01 OCA], [http://www.ebi.ac.uk/pdbsum/1a01 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1a01 RCSB]</span> | |||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
The high-resolution X-ray structures of the deoxy forms of four recombinant hemoglobins in which Trp37(C3)beta is replaced with Tyr (betaW37Y), Ala (betaW37A), Glu (betaW37E), or Gly (betaW37G) have been refined and analyzed with superposition methods that partition mutation-induced perturbations into quaternary structure changes and tertiary structure changes. In addition, a new cross-validation statistic that is sensitive to local changes in structure (a "local Rfree" parameter) was used as an objective measure of the significance of the tertiary structure changes. No significant mutation-induced changes in tertiary structure are detected at the mutation site itself for any of the four mutants studied. Instead, disruption of the intersubunit contacts associated with Trp37(C3)beta results in (1) a change in quaternary structure at the alpha1beta2 interface, (2) alpha subunit tertiary structure changes that are centered at Asp94(G1)alpha-Pro95(G2)alpha, (3) beta subunit tertiary structure changes that are located between residues Asp99(G1)beta and Asn102(G4)beta, (4) increased mobility of the alpha subunit COOH-terminal dipeptide, and (5) shortening of the Fe-Nepsilon2His(F8) bond in the alpha and beta subunits of the betaW37G and betaW37E mutants. In each case, the magnitude of the change in a particular structural parameter increases in the order betaW37Y < betaW37A < betaW37E approximately betaW37G, which corresponds closely to the degree of functional disruption documented in the preceding papers. | The high-resolution X-ray structures of the deoxy forms of four recombinant hemoglobins in which Trp37(C3)beta is replaced with Tyr (betaW37Y), Ala (betaW37A), Glu (betaW37E), or Gly (betaW37G) have been refined and analyzed with superposition methods that partition mutation-induced perturbations into quaternary structure changes and tertiary structure changes. In addition, a new cross-validation statistic that is sensitive to local changes in structure (a "local Rfree" parameter) was used as an objective measure of the significance of the tertiary structure changes. No significant mutation-induced changes in tertiary structure are detected at the mutation site itself for any of the four mutants studied. Instead, disruption of the intersubunit contacts associated with Trp37(C3)beta results in (1) a change in quaternary structure at the alpha1beta2 interface, (2) alpha subunit tertiary structure changes that are centered at Asp94(G1)alpha-Pro95(G2)alpha, (3) beta subunit tertiary structure changes that are located between residues Asp99(G1)beta and Asn102(G4)beta, (4) increased mobility of the alpha subunit COOH-terminal dipeptide, and (5) shortening of the Fe-Nepsilon2His(F8) bond in the alpha and beta subunits of the betaW37G and betaW37E mutants. In each case, the magnitude of the change in a particular structural parameter increases in the order betaW37Y < betaW37A < betaW37E approximately betaW37G, which corresponds closely to the degree of functional disruption documented in the preceding papers. | ||
==About this Structure== | ==About this Structure== | ||
Line 27: | Line 27: | ||
[[Category: Arnone, A.]] | [[Category: Arnone, A.]] | ||
[[Category: Kavanaugh, J S.]] | [[Category: Kavanaugh, J S.]] | ||
[[Category: oxygen transport]] | [[Category: oxygen transport]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 18:30:12 2008'' |
Revision as of 18:30, 30 March 2008
| |||||||
, resolution 1.8Å | |||||||
---|---|---|---|---|---|---|---|
Ligands: | |||||||
Gene: | HUMAN BETA GLOBIN (Homo sapiens) | ||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
HEMOGLOBIN (VAL BETA1 MET, TRP BETA37 ALA) MUTANT
OverviewOverview
The high-resolution X-ray structures of the deoxy forms of four recombinant hemoglobins in which Trp37(C3)beta is replaced with Tyr (betaW37Y), Ala (betaW37A), Glu (betaW37E), or Gly (betaW37G) have been refined and analyzed with superposition methods that partition mutation-induced perturbations into quaternary structure changes and tertiary structure changes. In addition, a new cross-validation statistic that is sensitive to local changes in structure (a "local Rfree" parameter) was used as an objective measure of the significance of the tertiary structure changes. No significant mutation-induced changes in tertiary structure are detected at the mutation site itself for any of the four mutants studied. Instead, disruption of the intersubunit contacts associated with Trp37(C3)beta results in (1) a change in quaternary structure at the alpha1beta2 interface, (2) alpha subunit tertiary structure changes that are centered at Asp94(G1)alpha-Pro95(G2)alpha, (3) beta subunit tertiary structure changes that are located between residues Asp99(G1)beta and Asn102(G4)beta, (4) increased mobility of the alpha subunit COOH-terminal dipeptide, and (5) shortening of the Fe-Nepsilon2His(F8) bond in the alpha and beta subunits of the betaW37G and betaW37E mutants. In each case, the magnitude of the change in a particular structural parameter increases in the order betaW37Y < betaW37A < betaW37E approximately betaW37G, which corresponds closely to the degree of functional disruption documented in the preceding papers.
About this StructureAbout this Structure
1A01 is a Protein complex structure of sequences from Homo sapiens. Full crystallographic information is available from OCA.
ReferenceReference
High-resolution crystal structures of human hemoglobin with mutations at tryptophan 37beta: structural basis for a high-affinity T-state,., Kavanaugh JS, Weydert JA, Rogers PH, Arnone A, Biochemistry. 1998 Mar 31;37(13):4358-73. PMID:9521756
Page seeded by OCA on Sun Mar 30 18:30:12 2008