4lbl: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of Human galectin-3 CRD K176L mutant in complex with a-GM3== | |||
<StructureSection load='4lbl' size='340' side='right' caption='[[4lbl]], [[Resolution|resolution]] 1.58Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4lbl]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4LBL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4LBL FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GAL:BETA-D-GALACTOSE'>GAL</scene></td></tr> | |||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SIA:O-SIALIC+ACID'>SIA</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4lbj|4lbj]], [[4lbk|4lbk]], [[4lbm|4lbm]], [[4lbn|4lbn]], [[4lbo|4lbo]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">LGALS3, MAC2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4lbl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4lbl OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4lbl RCSB], [http://www.ebi.ac.uk/pdbsum/4lbl PDBsum]</span></td></tr> | |||
</table> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/LEG3_HUMAN LEG3_HUMAN]] Galactose-specific lectin which binds IgE. May mediate with the alpha-3, beta-1 integrin the stimulation by CSPG4 of endothelial cells migration. Together with DMBT1, required for terminal differentiation of columnar epithelial cells during early embryogenesis (By similarity). In the nucleus: acts as a pre-mRNA splicing factor. Involved in acute inflammatory responses including neutrophil activation and adhesion, chemoattraction of monocytes macrophages, opsonization of apoptotic neutrophils, and activation of mast cells.<ref>PMID:15181153</ref> <ref>PMID:19594635</ref> <ref>PMID:19616076</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Galectins have essential roles in pathological states including cancer, inflammation, angiogenesis and microbial infections. Endogenous receptors include members of the lacto- and neolacto-series glycosphingolipids present on mammalian cells and contain the tetrasaccharides lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) that form their core structural components and also ganglio-series glycosphingolipids. We present crystallographic structures of the carbohydrate recognition domain of human galectin-3, both wild type and a mutant (K176L) that influenced ligand affinity, in complex with LNT, LNnT and acetamido ganglioside a-GM3 (alpha2,3-sialyllactose). Key structural features revealed include galectin-3's demonstration of a binding mode towards gangliosides distinct from that to the lacto/neolacto-glycosphingolipids, with its capacity for recognising the core beta-galactoside region being challenged when the core oligosaccharide epitope of ganglio-series glycosphingolipids (GM3) is embedded within particular higher-molecular-weight glycans. The lacto- and neolacto- glycosphingolipids revealed different orientations of their terminal galactose in the galectin-3-bound LNT and LNnT structures that has significant ramifications for the capacity of galectin-3 to interact with higher-order lacto/neolacto-series glycosphingolipids such as ABH blood group antigens and the HNK-1 antigen that is common on leukocytes. LNnT also presents an important model for poly-N-acetyllactosamine-containing glycans and provides insight into galectin-3's accommodation of extended oligosaccharides such as the poly-N-acetyllactosamine-modified N- and O-glycans that, via galectin-3 interaction, facilitate progression of lung and bladder cancers, respectively. These findings provide the first atomic detail of galectin-3's interactions with the core structures of mammalian glycosphingolipids, providing information important in understanding the capacity of galectin-3 to engage with receptors identified as facilitators of major disease. | |||
Galectin-3 Interactions with Glycosphingolipids.,Collins PM, Bum-Erdene K, Yu X, Blanchard H J Mol Biol. 2013 Dec 8. pii: S0022-2836(13)00743-2. doi:, 10.1016/j.jmb.2013.12.004. PMID:24326249<ref>PMID:24326249</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Galectin|Galectin]] | *[[Galectin|Galectin]] | ||
== References == | |||
== | <references/> | ||
__TOC__ | |||
[[Category: Blanchard, H | </StructureSection> | ||
[[Category: Bum-Erdene, K | [[Category: Human]] | ||
[[Category: Blanchard, H]] | |||
[[Category: Bum-Erdene, K]] | |||
[[Category: Beta sandwich]] | [[Category: Beta sandwich]] | ||
[[Category: Carbohydrate binding protein]] | [[Category: Carbohydrate binding protein]] |