4je4: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_4je4|  PDB=4je4  |  SCENE=  }}
==Crystal Structure of Monobody NSa1/SHP2 N-SH2 Domain Complex==
===Crystal Structure of Monobody NSa1/SHP2 N-SH2 Domain Complex===
<StructureSection load='4je4' size='340' side='right' caption='[[4je4]], [[Resolution|resolution]] 2.31&Aring;' scene=''>
{{ABSTRACT_PUBMED_23980151}}
== Structural highlights ==
 
<table><tr><td colspan='2'>[[4je4]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4JE4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4JE4 FirstGlance]. <br>
==Disease==
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4jeg|4jeg]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PTP2C, PTPN11, SHPTP2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4je4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4je4 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4je4 RCSB], [http://www.ebi.ac.uk/pdbsum/4je4 PDBsum]</span></td></tr>
</table>
== Disease ==
[[http://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN]] Defects in PTPN11 are the cause of LEOPARD syndrome type 1 (LEOPARD1) [MIM:[http://omim.org/entry/151100 151100]]. It is an autosomal dominant disorder allelic with Noonan syndrome. The acronym LEOPARD stands for lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and deafness.<ref>PMID:12058348</ref> <ref>PMID:14961557</ref> <ref>PMID:15389709</ref> <ref>PMID:15520399</ref> <ref>PMID:15121796</ref> <ref>PMID:15690106</ref> <ref>PMID:16679933</ref>  Defects in PTPN11 are the cause of Noonan syndrome type 1 (NS1) [MIM:[http://omim.org/entry/163950 163950]]. Noonan syndrome (NS) is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. Some patients with Noonan syndrome type 1 develop multiple giant cell lesions of the jaw or other bony or soft tissues, which are classified as pigmented villomoduolar synovitis (PVNS) when occurring in the jaw or joints. Note=Mutations in PTPN11 account for more than 50% of the cases. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS1 inheritance is autosomal dominant.<ref>PMID:11704759</ref> <ref>PMID:11992261</ref> <ref>PMID:12325025</ref> <ref>PMID:12161469</ref> <ref>PMID:12529711</ref> <ref>PMID:12634870</ref> <ref>PMID:12739139</ref> <ref>PMID:12960218</ref> <ref>PMID:12717436</ref> <ref>PMID:15384080</ref> <ref>PMID:15948193</ref> <ref>PMID:19020799</ref>  Defects in PTPN11 are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[http://omim.org/entry/607785 607785]]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor.<ref>PMID:12717436</ref>  Defects in PTPN11 are a cause of metachondromatosis (MC) [MIM:[http://omim.org/entry/156250 156250]]. It is a skeletal disorder with radiologic fetarures of both multiple exostoses and Ollier disease, characterized by the presence of multiple enchondromas and osteochondroma-like lesions.<ref>PMID:20577567</ref>   
[[http://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN]] Defects in PTPN11 are the cause of LEOPARD syndrome type 1 (LEOPARD1) [MIM:[http://omim.org/entry/151100 151100]]. It is an autosomal dominant disorder allelic with Noonan syndrome. The acronym LEOPARD stands for lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and deafness.<ref>PMID:12058348</ref> <ref>PMID:14961557</ref> <ref>PMID:15389709</ref> <ref>PMID:15520399</ref> <ref>PMID:15121796</ref> <ref>PMID:15690106</ref> <ref>PMID:16679933</ref>  Defects in PTPN11 are the cause of Noonan syndrome type 1 (NS1) [MIM:[http://omim.org/entry/163950 163950]]. Noonan syndrome (NS) is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. Some patients with Noonan syndrome type 1 develop multiple giant cell lesions of the jaw or other bony or soft tissues, which are classified as pigmented villomoduolar synovitis (PVNS) when occurring in the jaw or joints. Note=Mutations in PTPN11 account for more than 50% of the cases. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS1 inheritance is autosomal dominant.<ref>PMID:11704759</ref> <ref>PMID:11992261</ref> <ref>PMID:12325025</ref> <ref>PMID:12161469</ref> <ref>PMID:12529711</ref> <ref>PMID:12634870</ref> <ref>PMID:12739139</ref> <ref>PMID:12960218</ref> <ref>PMID:12717436</ref> <ref>PMID:15384080</ref> <ref>PMID:15948193</ref> <ref>PMID:19020799</ref>  Defects in PTPN11 are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[http://omim.org/entry/607785 607785]]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor.<ref>PMID:12717436</ref>  Defects in PTPN11 are a cause of metachondromatosis (MC) [MIM:[http://omim.org/entry/156250 156250]]. It is a skeletal disorder with radiologic fetarures of both multiple exostoses and Ollier disease, characterized by the presence of multiple enchondromas and osteochondroma-like lesions.<ref>PMID:20577567</ref>   
== Function ==
[[http://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN]] Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus. Dephosphorylates ROCK2 at Tyr-722 resulting in stimulatation of its RhoA binding activity.<ref>PMID:10655584</ref> <ref>PMID:18829466</ref> <ref>PMID:18559669</ref> 
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The dysregulated tyrosine kinase BCR-ABL causes chronic myelogenous leukemia in humans and forms a large multiprotein complex that includes the Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2). The expression of SHP2 is necessary for BCR-ABL-dependent oncogenic transformation, but the precise signaling mechanisms of SHP2 are not well understood. We have developed binding proteins, termed monobodies, for the N- and C-terminal SH2 domains of SHP2. Intracellular expression followed by interactome analysis showed that the monobodies are essentially monospecific to SHP2. Two crystal structures revealed that the monobodies occupy the phosphopeptide-binding sites of the SH2 domains and thus can serve as competitors of SH2-phosphotyrosine interactions. Surprisingly, the segments of both monobodies that bind to the peptide-binding grooves run in the opposite direction to that of canonical phosphotyrosine peptides, which may contribute to their exquisite specificity. When expressed in cells, monobodies targeting the N-SH2 domain disrupted the interaction of SHP2 with its upstream activator, the Grb2-associated binder 2 adaptor protein, suggesting decoupling of SHP2 from the BCR-ABL protein complex. Inhibition of either N-SH2 or C-SH2 was sufficient to inhibit two tyrosine phosphorylation events that are critical for SHP2 catalytic activity and to block ERK activation. In contrast, targeting the N-SH2 or C-SH2 revealed distinct roles of the two SH2 domains in downstream signaling, such as the phosphorylation of paxillin and signal transducer and activator of transcription 5. Our results delineate a hierarchy of function for the SH2 domains of SHP2 and validate monobodies as potent and specific antagonists of protein-protein interactions in cancer cells.


==Function==
Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains.,Sha F, Gencer EB, Georgeon S, Koide A, Yasui N, Koide S, Hantschel O Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14924-9. doi:, 10.1073/pnas.1303640110. Epub 2013 Aug 26. PMID:23980151<ref>PMID:23980151</ref>
[[http://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN]] Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus. Dephosphorylates ROCK2 at Tyr-722 resulting in stimulatation of its RhoA binding activity.<ref>PMID:10655584</ref> <ref>PMID:18829466</ref> <ref>PMID:18559669</ref>


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[4je4]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4JE4 OCA].
</div>


==Reference==
==See Also==
<ref group="xtra">PMID:023980151</ref><references group="xtra"/><references/>
*[[Tyrosine phosphatase|Tyrosine phosphatase]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Human]]
[[Category: Human]]
[[Category: Koide, S.]]
[[Category: Koide, S]]
[[Category: Sha, F.]]
[[Category: Sha, F]]
[[Category: Engineered binding protein]]
[[Category: Engineered binding protein]]
[[Category: Phosphatase]]
[[Category: Phosphatase]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA