Sandbox Reserved 827: Difference between revisions
Jump to navigation
Jump to search
Léa Faivre (talk | contribs) No edit summary |
Léa Faivre (talk | contribs) No edit summary |
||
Line 2: | Line 2: | ||
{{Sandbox_Reserved_ESBS}} | {{Sandbox_Reserved_ESBS}} | ||
<!-- PLEASE ADD YOUR CONTENT BELOW HERE --> | <!-- PLEASE ADD YOUR CONTENT BELOW HERE --> | ||
TBK1 stands for Tank Binding Kinase 1. This enzyme is a cytoplasmic serine-threonine kinase, coded by EC=2.7.11.1. It catalyzes the transfer of a phosphate group from an ATP onto a protein, in order to form a phosphoprotein and an ADP. Its primary sequence is 729 residues long. This homodimere is involved in several signalization pathways such as the inhibition of apoptosis, inflammatory response. Its substrates are NF-κ-B, various IRFs (interferon regulatory factors), DDX3X. It is involved in several complexes. | TBK1 stands for Tank Binding Kinase 1. This enzyme is a cytoplasmic serine-threonine kinase, coded by EC=2.7.11.1. It catalyzes the transfer of a phosphate group from an ATP onto a protein, in order to form a phosphoprotein and an ADP. Its primary sequence is 729 residues long. This homodimere is involved in several signalization pathways such as the inhibition of apoptosis, inflammatory response. Its substrates are NF-κ-B, various IRFs (interferon regulatory factors), DDX3X. It is involved in several complexes depending on the cell type and the stimuli. |
Revision as of 16:55, 24 December 2013
This Sandbox is Reserved from 06/12/2018, through 30/06/2019 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1480 through Sandbox Reserved 1543. |
To get started:
More help: Help:Editing |
TBK1 stands for Tank Binding Kinase 1. This enzyme is a cytoplasmic serine-threonine kinase, coded by EC=2.7.11.1. It catalyzes the transfer of a phosphate group from an ATP onto a protein, in order to form a phosphoprotein and an ADP. Its primary sequence is 729 residues long. This homodimere is involved in several signalization pathways such as the inhibition of apoptosis, inflammatory response. Its substrates are NF-κ-B, various IRFs (interferon regulatory factors), DDX3X. It is involved in several complexes depending on the cell type and the stimuli.