Sandbox vdr: Difference between revisions
Jump to navigation
Jump to search
Isita Amin (talk | contribs) No edit summary |
Isita Amin (talk | contribs) |
||
Line 21: | Line 21: | ||
==Mutation== | ==Mutation== | ||
<StructureSection load='VDRmutation1.pdb' size='350' side='right' caption='Mutation of Vitamin D Receptor' scene=''>In the article, "Phosphorylation of the Human Vitamin D receptor by Protein Kinase C" by Hsieh, J. et al, they presented their research on the mutation of serine to glycine and aspartic acid. | <StructureSection load='VDRmutation1.pdb' size='350' side='right' caption='Mutation of Vitamin D Receptor' scene=''>In the article, "Phosphorylation of the Human Vitamin D receptor by Protein Kinase C" by Hsieh, J. et al, they presented their research on the mutation of serine to glycine and aspartic acid. They mentioned that amino acids like serine and threonine kinase plays a crucial role in signal transduction pathways drawn out by variety of growth factors, hormones, and neurotransmitters. When <scene name='56/562378/Serine_final/1'>serine</scene> is mutated it is replaced with a <scene name='56/562378/Glycine_final/1'>glycine</scene> which results in an inhibition of transcriptional activation. When transcription is inhibited it results in p53 accumulation, which activates and promotes p53 translocation into mitochondria leading to apoptosis. Transcription inhibition is useful in cancer patients and so can be used as treatment option. These are the outcomes of the mutation, with the research still in the process to find the potential cure for tumors. | ||
Line 27: | Line 27: | ||
<scene name='56/562378/Serine_final/1'>Serine</scene> is replaced with <scene name='56/562378/Asparticacid_final/1'>aspartic acid</scene> when mutated creating a negative charge. The negative charge at the residue inhibits DNA binding which cause a down – regulation of VDR activity. VDR needs DNA binding in order for it to be activated which is only possible with a serine residue. Research is still continuing to find a therapeutic cause for this mutation. | <scene name='56/562378/Serine_final/1'>Serine</scene> is replaced with <scene name='56/562378/Asparticacid_final/1'>aspartic acid</scene> when mutated creating a negative charge. The negative charge at the residue inhibits DNA binding which cause a down – regulation of VDR activity. VDR needs DNA binding in order for it to be activated which is only possible with a serine residue. Research is still continuing to find a therapeutic cause for this mutation. | ||
</StructureSection> | </StructureSection> | ||
==Crystal structure of the human VDR ligand binding domain bound to the synthetic agonist compound 2alpha-methyl-AMCR277A(C23S)== | ==Crystal structure of the human VDR ligand binding domain bound to the synthetic agonist compound 2alpha-methyl-AMCR277A(C23S)== |