4i4h: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of CYP3A4 ligated to pyridine-substituted desoxyritonavir== | |||
<StructureSection load='4i4h' size='340' side='right' caption='[[4i4h]], [[Resolution|resolution]] 2.90Å' scene=''> | |||
{{ | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4i4h]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4I4H OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4I4H FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=Z9Z:PYRIDIN-3-YLMETHYL+[(2R,5S)-5-{[N-(METHYL{[2-(PROPAN-2-YL)-1,3-THIAZOL-4-YL]METHYL}CARBAMOYL)-D-VALYL]AMINO}-1,6-DIPHENYLHEXAN-2-YL]CARBAMATE'>Z9Z</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3nxu|3nxu]], [[4i4g|4i4g]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CYP3A4, CYP3A3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4i4h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4i4h OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4i4h RCSB], [http://www.ebi.ac.uk/pdbsum/4i4h PDBsum]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Utilization of the cytochrome P450 3A4 (CYP3A4) inhibitor ritonavir as a pharmacoenhancer for anti-HIV drugs revolutionized the treatment of HIV infection. However, owing to ritonavir-related complications, there is a need for development of new CYP3A4 inhibitors with improved pharmacochemical properties, which requires a full understanding of the CYP3A4 inactivation mechanisms and the unraveling of possible inhibitor binding modes. We investigated the mechanism of CYP3A4 interaction with three desoxyritonavir analogues, containing the heme-ligating imidazole, oxazole, or pyridine group instead of the thiazole moiety (compounds 1, 2, and 3, respectively). Our data show that compound 3 is superior to ritonavir in terms of binding affinity and inhibitory potency owing to greater flexibility and the ability to adopt a conformation that minimizes steric clashing and optimizes protein-ligand interactions. Additionally, Ser119 was identified as a key residue assisting binding of ritonavir-like inhibitors, which emphasizes the importance of polar interactions in the CYP3A4-ligand association. | |||
Pyridine-Substituted Desoxyritonavir Is a More Potent Inhibitor of Cytochrome P450 3A4 than Ritonavir.,Sevrioukova IF, Poulos TL J Med Chem. 2013 Apr 26. PMID:23586711<ref>PMID:23586711</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== | ==See Also== | ||
*[[Cytochrome P450|Cytochrome P450]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Poulos, T L | [[Category: Poulos, T L]] | ||
[[Category: Sevrioukova, I F | [[Category: Sevrioukova, I F]] | ||
[[Category: Cytochrome b5]] | [[Category: Cytochrome b5]] | ||
[[Category: Cytochrome p450]] | [[Category: Cytochrome p450]] |
Revision as of 15:50, 21 December 2014
Structural highlights
Publication Abstract from PubMedUtilization of the cytochrome P450 3A4 (CYP3A4) inhibitor ritonavir as a pharmacoenhancer for anti-HIV drugs revolutionized the treatment of HIV infection. However, owing to ritonavir-related complications, there is a need for development of new CYP3A4 inhibitors with improved pharmacochemical properties, which requires a full understanding of the CYP3A4 inactivation mechanisms and the unraveling of possible inhibitor binding modes. We investigated the mechanism of CYP3A4 interaction with three desoxyritonavir analogues, containing the heme-ligating imidazole, oxazole, or pyridine group instead of the thiazole moiety (compounds 1, 2, and 3, respectively). Our data show that compound 3 is superior to ritonavir in terms of binding affinity and inhibitory potency owing to greater flexibility and the ability to adopt a conformation that minimizes steric clashing and optimizes protein-ligand interactions. Additionally, Ser119 was identified as a key residue assisting binding of ritonavir-like inhibitors, which emphasizes the importance of polar interactions in the CYP3A4-ligand association. Pyridine-Substituted Desoxyritonavir Is a More Potent Inhibitor of Cytochrome P450 3A4 than Ritonavir.,Sevrioukova IF, Poulos TL J Med Chem. 2013 Apr 26. PMID:23586711[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|