3ciq: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==A regulatable switch mediates self-association in an immunoglobulin fold== | |||
<StructureSection load='3ciq' size='340' side='right' caption='[[3ciq]], [[Resolution|resolution]] 2.90Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3ciq]] is a 12 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CIQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3CIQ FirstGlance]. <br> | |||
==Disease== | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=TLA:L(+)-TARTARIC+ACID'>TLA</scene><br> | ||
[[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:[http://omim.org/entry/241600 241600]]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.<ref>PMID:16549777</ref> | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2f8o|2f8o]]</td></tr> | ||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">B2M ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ciq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ciq OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3ciq RCSB], [http://www.ebi.ac.uk/pdbsum/3ciq PDBsum]</span></td></tr> | |||
<table> | |||
== Disease == | |||
[[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:[http://omim.org/entry/241600 241600]]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.<ref>PMID:16549777</ref> Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.<ref>PMID:3532124</ref> <ref>PMID:1336137</ref> <ref>PMID:7554280</ref> <ref>PMID:4586824</ref> <ref>PMID:8084451</ref> <ref>PMID:12119416</ref> <ref>PMID:12796775</ref> <ref>PMID:16901902</ref> <ref>PMID:16491088</ref> <ref>PMID:17646174</ref> <ref>PMID:18835253</ref> <ref>PMID:18395224</ref> <ref>PMID:19284997</ref> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ci/3ciq_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Beta-2 microglobulin (beta2m) is a globular protein that self-associates into fibrillar amyloid deposits in patients undergoing hemodialysis therapy. Formation of these beta-sheet-rich assemblies is a fundamental property of polypeptides that can be triggered by diverse conditions. For beta2m, oligomerization into pre-amyloidogenic states occurs in specific response to coordination by Cu2+. Here we report the basis for this self-association at atomic resolution. Metal is not a direct participant in the molecular interface. Rather, binding results in distal alterations enabling the formation of two new surfaces. These interact to form a closed hexameric species. The origins of this include isomerization of a buried and conserved cis-proline previously implicated in the beta2m aggregation pathway. The consequences of this isomerization are evident and reveal a molecular basis for the conversion of this robust monomeric protein into an amyloid-competent state. | |||
A regulatable switch mediates self-association in an immunoglobulin fold.,Calabrese MF, Eakin CM, Wang JM, Miranker AD Nat Struct Mol Biol. 2008 Sep;15(9):965-71. PMID:19172750<ref>PMID:19172750</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Beta-2 microglobulin|Beta-2 microglobulin]] | *[[Beta-2 microglobulin|Beta-2 microglobulin]] | ||
== References == | |||
== | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Calabrese, M F.]] | [[Category: Calabrese, M F.]] |
Revision as of 23:55, 2 October 2014
A regulatable switch mediates self-association in an immunoglobulin foldA regulatable switch mediates self-association in an immunoglobulin fold
Structural highlights
Disease[B2MG_HUMAN] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:241600]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.[1] Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] Function[B2MG_HUMAN] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBeta-2 microglobulin (beta2m) is a globular protein that self-associates into fibrillar amyloid deposits in patients undergoing hemodialysis therapy. Formation of these beta-sheet-rich assemblies is a fundamental property of polypeptides that can be triggered by diverse conditions. For beta2m, oligomerization into pre-amyloidogenic states occurs in specific response to coordination by Cu2+. Here we report the basis for this self-association at atomic resolution. Metal is not a direct participant in the molecular interface. Rather, binding results in distal alterations enabling the formation of two new surfaces. These interact to form a closed hexameric species. The origins of this include isomerization of a buried and conserved cis-proline previously implicated in the beta2m aggregation pathway. The consequences of this isomerization are evident and reveal a molecular basis for the conversion of this robust monomeric protein into an amyloid-competent state. A regulatable switch mediates self-association in an immunoglobulin fold.,Calabrese MF, Eakin CM, Wang JM, Miranker AD Nat Struct Mol Biol. 2008 Sep;15(9):965-71. PMID:19172750[15] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|