2kqs: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{STRUCTURE_2kqs| PDB=2kqs | SCENE= }} | {{STRUCTURE_2kqs| PDB=2kqs | SCENE= }} | ||
===Phosphorylation of SUMO-interacting motif by CK2 enhances Daxx SUMO binding activity=== | ===Phosphorylation of SUMO-interacting motif by CK2 enhances Daxx SUMO binding activity=== | ||
{{ | {{ABSTRACT_PUBMED_21474068}} | ||
==Disease== | ==Disease== | ||
[[http://www.uniprot.org/uniprot/SUMO1_HUMAN SUMO1_HUMAN]] Defects in SUMO1 are the cause of non-syndromic orofacial cleft type 10 (OFC10) [MIM:[http://omim.org/entry/613705 613705]]; also called non-syndromic cleft lip with or without cleft palate 10. OFC10 is a birth defect consisting of cleft lips with or without cleft palate. Cleft lips are associated with cleft palate in two-third of cases. A cleft lip can occur on one or both sides and range in severity from a simple notch in the upper lip to a complete opening in the lip extending into the floor of the nostril and involving the upper gum. Note=A chromosomal aberation involving SUMO1 is the cause of OFC10. Translocation t(2;8)(q33.1;q24.3). The breakpoint occurred in the SUMO1 gene and resulted in haploinsufficiency confirmed by protein assays.<ref>PMID:16990542</ref> | [[http://www.uniprot.org/uniprot/SUMO1_HUMAN SUMO1_HUMAN]] Defects in SUMO1 are the cause of non-syndromic orofacial cleft type 10 (OFC10) [MIM:[http://omim.org/entry/613705 613705]]; also called non-syndromic cleft lip with or without cleft palate 10. OFC10 is a birth defect consisting of cleft lips with or without cleft palate. Cleft lips are associated with cleft palate in two-third of cases. A cleft lip can occur on one or both sides and range in severity from a simple notch in the upper lip to a complete opening in the lip extending into the floor of the nostril and involving the upper gum. Note=A chromosomal aberation involving SUMO1 is the cause of OFC10. Translocation t(2;8)(q33.1;q24.3). The breakpoint occurred in the SUMO1 gene and resulted in haploinsufficiency confirmed by protein assays.<ref>PMID:16990542</ref> | ||
==Function== | ==Function== | ||
[[http://www.uniprot.org/uniprot/SUMO1_HUMAN SUMO1_HUMAN]] Ubiquitin-like protein that can be covalently attached to proteins as a monomer or a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by E3 ligases such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Involved for instance in targeting RANGAP1 to the nuclear pore complex protein RANBP2. Polymeric SUMO1 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins. May also regulate a network of genes involved in palate development.<ref>PMID:9019411</ref><ref>PMID:9162015</ref><ref>PMID:18538659</ref><ref>PMID:18408734</ref> [[http://www.uniprot.org/uniprot/DAXX_HUMAN DAXX_HUMAN]] Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Down-regulates basal and activated transcription. Seems to act as a transcriptional corepressor and inhibits PAX3 and ETS1 through direct protein-protein interaction. Modulates PAX5 activity. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively.<ref>PMID:12140263</ref><ref>PMID:15364927</ref><ref>PMID:17081986</ref><ref>PMID:16845383</ref> | [[http://www.uniprot.org/uniprot/SUMO1_HUMAN SUMO1_HUMAN]] Ubiquitin-like protein that can be covalently attached to proteins as a monomer or a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by E3 ligases such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Involved for instance in targeting RANGAP1 to the nuclear pore complex protein RANBP2. Polymeric SUMO1 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins. May also regulate a network of genes involved in palate development.<ref>PMID:9019411</ref> <ref>PMID:9162015</ref> <ref>PMID:18538659</ref> <ref>PMID:18408734</ref> [[http://www.uniprot.org/uniprot/DAXX_HUMAN DAXX_HUMAN]] Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Down-regulates basal and activated transcription. Seems to act as a transcriptional corepressor and inhibits PAX3 and ETS1 through direct protein-protein interaction. Modulates PAX5 activity. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively.<ref>PMID:12140263</ref> <ref>PMID:15364927</ref> <ref>PMID:17081986</ref> <ref>PMID:16845383</ref> | ||
==About this Structure== | ==About this Structure== | ||
Line 16: | Line 16: | ||
==Reference== | ==Reference== | ||
<references group="xtra"/><references/> | <ref group="xtra">PMID:021474068</ref><references group="xtra"/><references/> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Huang, T.]] | [[Category: Huang, T H.]] | ||
[[Category: Naik, M T.]] | [[Category: Naik, M T.]] | ||
[[Category: Shih, H.]] | [[Category: Shih, H.]] |