2dri: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_2dri|  PDB=2dri  |  SCENE=  }}
==PROBING PROTEIN-PROTEIN INTERACTIONS: THE RIBOSE BINDING PROTEIN IN BACTERIAL TRANSPORT AND CHEMOTAXIS==
===PROBING PROTEIN-PROTEIN INTERACTIONS: THE RIBOSE BINDING PROTEIN IN BACTERIAL TRANSPORT AND CHEMOTAXIS===
<StructureSection load='2dri' size='340' side='right' caption='[[2dri]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
{{ABSTRACT_PUBMED_7982928}}
== Structural highlights ==
<table><tr><td colspan='2'>[[2dri]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1dri 1dri]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2DRI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2DRI FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=RIP:RIBOSE(PYRANOSE+FORM)'>RIP</scene><br>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2dri FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2dri OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2dri RCSB], [http://www.ebi.ac.uk/pdbsum/2dri PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/dr/2dri_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
A number of mutations at Gly134 of the periplasmic ribose-binding protein of Escherichia coli were examined by a combined biochemical and structural approach. Different mutations gave rise to different patterns of effects on the chemotaxis and transport functions. The smallest residue (alanine) had the least effect on transport, whereas large hydrophobic residues had the smallest effect on chemotaxis. Comparison of the x-ray crystal structure of the G134R mutant protein (2.5-A resolution) to that of the wild type (1.6-A resolution) showed that the basic structure of the protein was unaltered. The loss of chemotaxis and transport functions in this and similar mutant proteins must therefore be caused by relatively simple surface effects, which include a change in local main chain conformation. The loss of chemotaxis and transport functions resulting from the introduction of an alanine residue at position 134 was suppressed by an additional isoleucine to threonine mutation at residue 132. An x-ray structure of the I132T/G134A double mutant protein (2.2-A resolution) showed that the changes in local structure were accompanied by a diffuse pattern of structural changes in the surrounding region, implying that the suppression derives from a combination of sources.


==About this Structure==
Probing protein-protein interactions. The ribose-binding protein in bacterial transport and chemotaxis.,Bjorkman AJ, Binnie RA, Zhang H, Cole LB, Hermodson MA, Mowbray SL J Biol Chem. 1994 Dec 2;269(48):30206-11. PMID:7982928<ref>PMID:7982928</ref>
[[2dri]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1dri 1dri]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2DRI OCA].
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


==See Also==
==See Also==
Line 10: Line 29:
*[[Molecular Playground/RBP|Molecular Playground/RBP]]
*[[Molecular Playground/RBP|Molecular Playground/RBP]]
*[[Ribose-binding protein|Ribose-binding protein]]
*[[Ribose-binding protein|Ribose-binding protein]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:007982928</ref><ref group="xtra">doi 10.1080/07391102.2012.721497</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Cole, L B.]]
[[Category: Cole, L B.]]
[[Category: Mowbray, S L.]]
[[Category: Mowbray, S L.]]
[[Category: Sugar transport]]
[[Category: Sugar transport]]

Revision as of 03:28, 30 September 2014

PROBING PROTEIN-PROTEIN INTERACTIONS: THE RIBOSE BINDING PROTEIN IN BACTERIAL TRANSPORT AND CHEMOTAXISPROBING PROTEIN-PROTEIN INTERACTIONS: THE RIBOSE BINDING PROTEIN IN BACTERIAL TRANSPORT AND CHEMOTAXIS

Structural highlights

2dri is a 1 chain structure with sequence from Escherichia coli. This structure supersedes the now removed PDB entry 1dri. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

A number of mutations at Gly134 of the periplasmic ribose-binding protein of Escherichia coli were examined by a combined biochemical and structural approach. Different mutations gave rise to different patterns of effects on the chemotaxis and transport functions. The smallest residue (alanine) had the least effect on transport, whereas large hydrophobic residues had the smallest effect on chemotaxis. Comparison of the x-ray crystal structure of the G134R mutant protein (2.5-A resolution) to that of the wild type (1.6-A resolution) showed that the basic structure of the protein was unaltered. The loss of chemotaxis and transport functions in this and similar mutant proteins must therefore be caused by relatively simple surface effects, which include a change in local main chain conformation. The loss of chemotaxis and transport functions resulting from the introduction of an alanine residue at position 134 was suppressed by an additional isoleucine to threonine mutation at residue 132. An x-ray structure of the I132T/G134A double mutant protein (2.2-A resolution) showed that the changes in local structure were accompanied by a diffuse pattern of structural changes in the surrounding region, implying that the suppression derives from a combination of sources.

Probing protein-protein interactions. The ribose-binding protein in bacterial transport and chemotaxis.,Bjorkman AJ, Binnie RA, Zhang H, Cole LB, Hermodson MA, Mowbray SL J Biol Chem. 1994 Dec 2;269(48):30206-11. PMID:7982928[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Bjorkman AJ, Binnie RA, Zhang H, Cole LB, Hermodson MA, Mowbray SL. Probing protein-protein interactions. The ribose-binding protein in bacterial transport and chemotaxis. J Biol Chem. 1994 Dec 2;269(48):30206-11. PMID:7982928

2dri, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA