4dpg: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[ | ==Crystal Structure of Human LysRS: P38/AIMP2 Complex I== | ||
<StructureSection load='4dpg' size='340' side='right' caption='[[4dpg]], [[Resolution|resolution]] 2.84Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4dpg]] is a 12 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4DPG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4DPG FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ALA:ALANINE'>ALA</scene>, <scene name='pdbligand=APC:DIPHOSPHOMETHYLPHOSPHONIC+ACID+ADENOSYL+ESTER'>APC</scene>, <scene name='pdbligand=LYS:LYSINE'>LYS</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4dpj|4dpj]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">KARS, KIAA0070 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]), AIMP2, JTV1, PRO0992 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysine--tRNA_ligase Lysine--tRNA ligase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.1.1.6 6.1.1.6] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4dpg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4dpg OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4dpg RCSB], [http://www.ebi.ac.uk/pdbsum/4dpg PDBsum]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[[http://www.uniprot.org/uniprot/SYK_HUMAN SYK_HUMAN]] Defects in KARS are the cause of Charcot-Marie-Tooth disease recessive intermediate type B (CMTRIB) [MIM:[http://omim.org/entry/613641 613641]]; also called Charcot-Marie-Tooth neuropathy recessive intermediate B. CMTRIB is a form of Charcot-Marie-Tooth disease, a disorder of the peripheral nervous system, characterized by progressive weakness and atrophy, initially of the peroneal muscles and later of the distal muscles of the arms. Recessive intermediate forms of Charcot-Marie-Tooth disease are characterized by clinical and pathologic features intermediate between demyelinating and axonal peripheral neuropathies, and motor median nerve conduction velocities ranging from 25 to 45 m/sec.<ref>PMID:20920668</ref> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/SYK_HUMAN SYK_HUMAN]] Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. When secreted, acts as a signaling molecule that induces immune response through the activation of monocyte/macrophages. Catalyzes the synthesis of diadenosine oligophosphate (Ap4A), a signaling molecule involved in the activation of MITF transcriptional activity. Interacts with HIV-1 virus GAG protein, facilitating the selective packaging of tRNA(3)(Lys), the primer for reverse transcription initiation.<ref>PMID:5338216</ref> <ref>PMID:15851690</ref> [[http://www.uniprot.org/uniprot/AIMP2_HUMAN AIMP2_HUMAN]] Required for assembly and stability of the aminoacyl-tRNA synthase complex. Mediates ubiquitination and degradation of FUBP1, a transcriptional activator of MYC, leading to MYC down-regulation which is required for aveolar type II cell differentiation. Blocks MDM2-mediated ubiquitination and degradation of p53/TP53. Functions as a proapoptotic factor.<ref>PMID:16135753</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Lysyl-tRNA synthetase (LysRS), a component of the translation apparatus, is released from the cytoplasmic multi-tRNA synthetase complex (MSC) to activate the transcription factor MITF in stimulated mast cells through undefined mechanisms. Here we show that Ser207 phosphorylation provokes a new conformer of LysRS that inactivates its translational function but activates its transcriptional function. The crystal structure of an MSC subcomplex established that LysRS is held in the MSC by binding to the N terminus of the scaffold protein p38/AIMP2. Phosphorylation-created steric clashes at the LysRS domain interface disrupt its binding grooves for p38/AIMP2, releasing LysRS and provoking its nuclear translocation. This alteration also exposes the C-terminal domain of LysRS to bind to MITF and triggers LysRS-directed production of the second messenger Ap(4)A that activates MITF. Thus our results establish that a single conformational change triggered by phosphorylation leads to multiple effects driving an exclusive switch of LysRS function from translation to transcription. | |||
Structural Switch of Lysyl-tRNA Synthetase between Translation and Transcription.,Ofir-Birin Y, Fang P, Bennett SP, Zhang HM, Wang J, Rachmin I, Shapiro R, Song J, Dagan A, Pozo J, Kim S, Marshall AG, Schimmel P, Yang XL, Nechushtan H, Razin E, Guo M Mol Cell. 2013 Jan 10;49(1):30-42. doi: 10.1016/j.molcel.2012.10.010. Epub 2012, Nov 15. PMID:23159739<ref>PMID:23159739</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
== | __TOC__ | ||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Lysine--tRNA ligase]] | [[Category: Lysine--tRNA ligase]] | ||
[[Category: Bennett, S P | [[Category: Bennett, S P]] | ||
[[Category: Fang, P | [[Category: Fang, P]] | ||
[[Category: Guo, M | [[Category: Guo, M]] | ||
[[Category: Wang, J | [[Category: Wang, J]] | ||
[[Category: Aimp2]] | [[Category: Aimp2]] | ||
[[Category: Ligase-apoptosis complex]] | [[Category: Ligase-apoptosis complex]] |
Revision as of 18:46, 9 December 2014
Crystal Structure of Human LysRS: P38/AIMP2 Complex ICrystal Structure of Human LysRS: P38/AIMP2 Complex I
Structural highlights
Disease[SYK_HUMAN] Defects in KARS are the cause of Charcot-Marie-Tooth disease recessive intermediate type B (CMTRIB) [MIM:613641]; also called Charcot-Marie-Tooth neuropathy recessive intermediate B. CMTRIB is a form of Charcot-Marie-Tooth disease, a disorder of the peripheral nervous system, characterized by progressive weakness and atrophy, initially of the peroneal muscles and later of the distal muscles of the arms. Recessive intermediate forms of Charcot-Marie-Tooth disease are characterized by clinical and pathologic features intermediate between demyelinating and axonal peripheral neuropathies, and motor median nerve conduction velocities ranging from 25 to 45 m/sec.[1] Function[SYK_HUMAN] Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. When secreted, acts as a signaling molecule that induces immune response through the activation of monocyte/macrophages. Catalyzes the synthesis of diadenosine oligophosphate (Ap4A), a signaling molecule involved in the activation of MITF transcriptional activity. Interacts with HIV-1 virus GAG protein, facilitating the selective packaging of tRNA(3)(Lys), the primer for reverse transcription initiation.[2] [3] [AIMP2_HUMAN] Required for assembly and stability of the aminoacyl-tRNA synthase complex. Mediates ubiquitination and degradation of FUBP1, a transcriptional activator of MYC, leading to MYC down-regulation which is required for aveolar type II cell differentiation. Blocks MDM2-mediated ubiquitination and degradation of p53/TP53. Functions as a proapoptotic factor.[4] Publication Abstract from PubMedLysyl-tRNA synthetase (LysRS), a component of the translation apparatus, is released from the cytoplasmic multi-tRNA synthetase complex (MSC) to activate the transcription factor MITF in stimulated mast cells through undefined mechanisms. Here we show that Ser207 phosphorylation provokes a new conformer of LysRS that inactivates its translational function but activates its transcriptional function. The crystal structure of an MSC subcomplex established that LysRS is held in the MSC by binding to the N terminus of the scaffold protein p38/AIMP2. Phosphorylation-created steric clashes at the LysRS domain interface disrupt its binding grooves for p38/AIMP2, releasing LysRS and provoking its nuclear translocation. This alteration also exposes the C-terminal domain of LysRS to bind to MITF and triggers LysRS-directed production of the second messenger Ap(4)A that activates MITF. Thus our results establish that a single conformational change triggered by phosphorylation leads to multiple effects driving an exclusive switch of LysRS function from translation to transcription. Structural Switch of Lysyl-tRNA Synthetase between Translation and Transcription.,Ofir-Birin Y, Fang P, Bennett SP, Zhang HM, Wang J, Rachmin I, Shapiro R, Song J, Dagan A, Pozo J, Kim S, Marshall AG, Schimmel P, Yang XL, Nechushtan H, Razin E, Guo M Mol Cell. 2013 Jan 10;49(1):30-42. doi: 10.1016/j.molcel.2012.10.010. Epub 2012, Nov 15. PMID:23159739[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|