2f43: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:2f43.png|left|200px]]
==Rat liver F1-ATPase==
<StructureSection load='2f43' size='340' side='right' caption='[[2f43]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2f43]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2F43 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2F43 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=VO4:VANADATE+ION'>VO4</scene><br>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.14 3.6.3.14] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2f43 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2f43 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2f43 RCSB], [http://www.ebi.ac.uk/pdbsum/2f43 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f4/2f43_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
ATP synthesis from ADP, P(i), and Mg2+ takes place in mitochondria on the catalytic F1 unit (alpha3beta3gammedeltaepsilon) of the ATP synthase complex (F0F1), a remarkable nanomachine that interconverts electrochemical and mechanical energy, producing the high energy terminal bond of ATP. In currently available structural models of F1, the P-loop (amino acid residues 156GGAGVGKT163) contributes to substrate binding at the subunit catalytic sites. Here, we report the first transition state-like structure of F1 (ADP.V(i).Mg.F1) from rat liver that was crystallized with the phosphate (P(i)) analog vanadate (VO(3-)4 or V(i)). Compared with earlier "ground state" structures, this new F1 structure reveals that the active site region has undergone significant remodeling. P-loop residue alanine 158 is located much closer to V(i) than it is to P(i) in a previous structural model. No significant movements of P-loop residues of the subunit were observed at its analogous but noncatalytic sites. Under physiological conditions, such active site remodeling involving the small hydrophobic alanine residue may promote ATP synthesis by lowering the local dielectric constant, thus facilitating the dehydration of ADP and P(i). This new crystallographic study provides strong support for the catalytic mechanism of ATP synthesis deduced from earlier biochemical studies of liver F1 conducted in the presence of V(i) (Ko, Y. H., Bianchet, M., Amzel, L. M., and Pedersen, P. L. (1997) J. Biol. Chem. 272, 18875-18881; Ko, Y. H., Hong, S., and Pedersen, P. L. (1999) J. Biol. Chem. 274, 28853-28856).


{{STRUCTURE_2f43|  PDB=2f43  |  SCENE=  }}
Mitochondrial ATP synthase. Crystal structure of the catalytic F1 unit in a vanadate-induced transition-like state and implications for mechanism.,Chen C, Saxena AK, Simcoke WN, Garboczi DN, Pedersen PL, Ko YH J Biol Chem. 2006 May 12;281(19):13777-83. Epub 2006 Mar 10. PMID:16531409<ref>PMID:16531409</ref>


===Rat liver F1-ATPase===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


{{ABSTRACT_PUBMED_16531409}}
==See Also==
 
*[[ATPase|ATPase]]
==About this Structure==
== References ==
[[2f43]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2F43 OCA].
<references/>
 
__TOC__
==Reference==
</StructureSection>
<ref group="xtra">PMID:016531409</ref><ref group="xtra">PMID:009736690</ref><references group="xtra"/>
[[Category: Rattus norvegicus]]
[[Category: Rattus norvegicus]]
[[Category: Chen, C.]]
[[Category: Chen, C.]]

Revision as of 04:20, 30 September 2014

Rat liver F1-ATPaseRat liver F1-ATPase

Structural highlights

2f43 is a 3 chain structure with sequence from Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Activity:H(+)-transporting two-sector ATPase, with EC number 3.6.3.14
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

ATP synthesis from ADP, P(i), and Mg2+ takes place in mitochondria on the catalytic F1 unit (alpha3beta3gammedeltaepsilon) of the ATP synthase complex (F0F1), a remarkable nanomachine that interconverts electrochemical and mechanical energy, producing the high energy terminal bond of ATP. In currently available structural models of F1, the P-loop (amino acid residues 156GGAGVGKT163) contributes to substrate binding at the subunit catalytic sites. Here, we report the first transition state-like structure of F1 (ADP.V(i).Mg.F1) from rat liver that was crystallized with the phosphate (P(i)) analog vanadate (VO(3-)4 or V(i)). Compared with earlier "ground state" structures, this new F1 structure reveals that the active site region has undergone significant remodeling. P-loop residue alanine 158 is located much closer to V(i) than it is to P(i) in a previous structural model. No significant movements of P-loop residues of the subunit were observed at its analogous but noncatalytic sites. Under physiological conditions, such active site remodeling involving the small hydrophobic alanine residue may promote ATP synthesis by lowering the local dielectric constant, thus facilitating the dehydration of ADP and P(i). This new crystallographic study provides strong support for the catalytic mechanism of ATP synthesis deduced from earlier biochemical studies of liver F1 conducted in the presence of V(i) (Ko, Y. H., Bianchet, M., Amzel, L. M., and Pedersen, P. L. (1997) J. Biol. Chem. 272, 18875-18881; Ko, Y. H., Hong, S., and Pedersen, P. L. (1999) J. Biol. Chem. 274, 28853-28856).

Mitochondrial ATP synthase. Crystal structure of the catalytic F1 unit in a vanadate-induced transition-like state and implications for mechanism.,Chen C, Saxena AK, Simcoke WN, Garboczi DN, Pedersen PL, Ko YH J Biol Chem. 2006 May 12;281(19):13777-83. Epub 2006 Mar 10. PMID:16531409[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Chen C, Saxena AK, Simcoke WN, Garboczi DN, Pedersen PL, Ko YH. Mitochondrial ATP synthase. Crystal structure of the catalytic F1 unit in a vanadate-induced transition-like state and implications for mechanism. J Biol Chem. 2006 May 12;281(19):13777-83. Epub 2006 Mar 10. PMID:16531409 doi:10.1074/jbc.M513369200

2f43, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA