1hg1: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:1hg1.png|left|200px]]
==X-RAY STRUCTURE OF THE COMPLEX BETWEEN ERWINIA CHRYSANTHEMI L-ASPARAGINASE AND D-ASPARTATE==
<StructureSection load='1hg1' size='340' side='right' caption='[[1hg1]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1hg1]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Erwinia_chrysanthemi Erwinia chrysanthemi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HG1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1HG1 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DAS:D-ASPARTIC+ACID'>DAS</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1hfj|1hfj]], [[1hfk|1hfk]], [[1hfw|1hfw]], [[1hg0|1hg0]]</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Asparaginase Asparaginase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.1.1 3.5.1.1] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1hg1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hg1 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1hg1 RCSB], [http://www.ebi.ac.uk/pdbsum/1hg1 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hg/1hg1_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Bacterial L-asparaginases, enzymes that catalyze the hydrolysis of L-asparagine to aspartic acid, have been used for over 30 years as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia. Other substrates of asparaginases include L-glutamine, D-asparagine, and succinic acid monoamide. In this report, we present high-resolution crystal structures of the complexes of Erwinia chrysanthemi L-asparaginase (ErA) with the products of such reactions that also can serve as substrates, namely L-glutamic acid (L-Glu), D-aspartic acid (D-Asp), and succinic acid (Suc). Comparison of the four independent active sites within each complex indicates unique and specific binding of the ligand molecules; the mode of binding is also similar between complexes. The lack of the alpha-NH3(+) group in Suc, compared to L-Asp, does not affect the binding mode. The side chain of L-Glu, larger than that of L-Asp, causes several structural distortions in the ErA active side. The active site flexible loop (residues 15-33) does not exhibit stable conformation, resulting in suboptimal orientation of the nucleophile, Thr15. Additionally, the delta-COO(-) plane of L-Glu is approximately perpendicular to the plane of gamma-COO(-) in L-Asp bound to the asparaginase active site. Binding of D-Asp to the ErA active site is very distinctive compared to the other ligands, suggesting that the low activity of ErA against D-Asp could be mainly attributed to the low k(cat) value. A comparison of the amino acid sequence and the crystal structure of ErA with those of other bacterial L-asparaginases shows that the presence of two active-site residues, Glu63(ErA) and Ser254(ErA), may correlate with significant glutaminase activity, while their substitution by Gln and Asn, respectively, may lead to minimal L-glutaminase activity.


{{STRUCTURE_1hg1|  PDB=1hg1  |  SCENE=  }}
Structural basis for the activity and substrate specificity of Erwinia chrysanthemi L-asparaginase.,Aghaiypour K, Wlodawer A, Lubkowski J Biochemistry. 2001 May 15;40(19):5655-64. PMID:11341830<ref>PMID:11341830</ref>


===X-RAY STRUCTURE OF THE COMPLEX BETWEEN ERWINIA CHRYSANTHEMI L-ASPARAGINASE AND D-ASPARTATE===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_11341830}}
 
==About this Structure==
[[1hg1]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Erwinia_chrysanthemi Erwinia chrysanthemi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HG1 OCA].


==See Also==
==See Also==
*[[Asparaginase|Asparaginase]]
*[[Asparaginase|Asparaginase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:011341830</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Asparaginase]]
[[Category: Asparaginase]]
[[Category: Erwinia chrysanthemi]]
[[Category: Erwinia chrysanthemi]]

Revision as of 17:47, 29 September 2014

X-RAY STRUCTURE OF THE COMPLEX BETWEEN ERWINIA CHRYSANTHEMI L-ASPARAGINASE AND D-ASPARTATEX-RAY STRUCTURE OF THE COMPLEX BETWEEN ERWINIA CHRYSANTHEMI L-ASPARAGINASE AND D-ASPARTATE

Structural highlights

1hg1 is a 4 chain structure with sequence from Erwinia chrysanthemi. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Related:1hfj, 1hfk, 1hfw, 1hg0
Activity:Asparaginase, with EC number 3.5.1.1
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Bacterial L-asparaginases, enzymes that catalyze the hydrolysis of L-asparagine to aspartic acid, have been used for over 30 years as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia. Other substrates of asparaginases include L-glutamine, D-asparagine, and succinic acid monoamide. In this report, we present high-resolution crystal structures of the complexes of Erwinia chrysanthemi L-asparaginase (ErA) with the products of such reactions that also can serve as substrates, namely L-glutamic acid (L-Glu), D-aspartic acid (D-Asp), and succinic acid (Suc). Comparison of the four independent active sites within each complex indicates unique and specific binding of the ligand molecules; the mode of binding is also similar between complexes. The lack of the alpha-NH3(+) group in Suc, compared to L-Asp, does not affect the binding mode. The side chain of L-Glu, larger than that of L-Asp, causes several structural distortions in the ErA active side. The active site flexible loop (residues 15-33) does not exhibit stable conformation, resulting in suboptimal orientation of the nucleophile, Thr15. Additionally, the delta-COO(-) plane of L-Glu is approximately perpendicular to the plane of gamma-COO(-) in L-Asp bound to the asparaginase active site. Binding of D-Asp to the ErA active site is very distinctive compared to the other ligands, suggesting that the low activity of ErA against D-Asp could be mainly attributed to the low k(cat) value. A comparison of the amino acid sequence and the crystal structure of ErA with those of other bacterial L-asparaginases shows that the presence of two active-site residues, Glu63(ErA) and Ser254(ErA), may correlate with significant glutaminase activity, while their substitution by Gln and Asn, respectively, may lead to minimal L-glutaminase activity.

Structural basis for the activity and substrate specificity of Erwinia chrysanthemi L-asparaginase.,Aghaiypour K, Wlodawer A, Lubkowski J Biochemistry. 2001 May 15;40(19):5655-64. PMID:11341830[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Aghaiypour K, Wlodawer A, Lubkowski J. Structural basis for the activity and substrate specificity of Erwinia chrysanthemi L-asparaginase. Biochemistry. 2001 May 15;40(19):5655-64. PMID:11341830

1hg1, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA