2zxc: Difference between revisions
m Protected "2zxc" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==seramidase complexed with C2== | ||
<StructureSection load='2zxc' size='340' side='right' caption='[[2zxc]], [[Resolution|resolution]] 2.20Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2zxc]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Pseudomonas_aeruginosa Pseudomonas aeruginosa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ZXC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ZXC FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=2ED:N-[(1R,2R,3E)-2-HYDROXY-1-(HYDROXYMETHYL)HEPTADEC-3-EN-1-YL]ACETAMIDE'>2ED</scene>, <scene name='pdbligand=DMS:DIMETHYL+SULFOXIDE'>DMS</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ceramidase Ceramidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.1.23 3.5.1.23] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2zxc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2zxc OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2zxc RCSB], [http://www.ebi.ac.uk/pdbsum/2zxc PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/zx/2zxc_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Ceramidase (CDase; EC 3.5.1.23) hydrolyzes ceramide to generate sphingosine and fatty acid. The enzyme plays a regulatory role in a variety of physiological events in eukaryotes and also functions as an exotoxin in particular bacteria. The crystal structures of neutral CDase from Pseudomonas aeruginosa (PaCD) in the C2-ceramide-bound and -unbound forms were determined at 2.2 and 1.4 A resolutions, respectively. PaCD consists of two domains, and the Zn(2+)- and Mg(2+)/Ca(2+)-binding sites are found within the center of the N-terminal domain and the interface between the domains, respectively. The structural comparison between the C2-ceramide-bound and unbound forms revealed an open-closed conformational change occurring to loop I upon binding of C2-ceramide. In the closed state, this loop sits above the Zn(2+) coordination site and over the opening to the substrate binding site. Mutational analyses of residues surrounding the Zn(2+) of PaCD and rat neutral CDase revealed that the cleavage or creation of the N-acyl linkage of ceramide follows a similar mechanism as observed for the Zn(2+)-dependent carboxypeptidases. The results provide an understanding of the molecular mechanism of hydrolysis and synthesis of ceramide by the enzyme. Furthermore, insights into the actions of PaCD and eukaryotic neutral CDases as an exotoxin and mediators of sphingolipid signaling are also revealed, respectively. | |||
Mechanistic insights into the hydrolysis and synthesis of ceramide by neutral ceramidase.,Inoue T, Okino N, Kakuta Y, Hijikata A, Okano H, Goda HM, Tani M, Sueyoshi N, Kambayashi K, Matsumura H, Kai Y, Ito M J Biol Chem. 2009 Apr 3;284(14):9566-77. Epub 2008 Dec 16. PMID:19088069<ref>PMID:19088069</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
< | |||
[[Category: Ceramidase]] | [[Category: Ceramidase]] | ||
[[Category: Pseudomonas aeruginosa]] | [[Category: Pseudomonas aeruginosa]] |
Revision as of 08:36, 2 October 2014
seramidase complexed with C2seramidase complexed with C2
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCeramidase (CDase; EC 3.5.1.23) hydrolyzes ceramide to generate sphingosine and fatty acid. The enzyme plays a regulatory role in a variety of physiological events in eukaryotes and also functions as an exotoxin in particular bacteria. The crystal structures of neutral CDase from Pseudomonas aeruginosa (PaCD) in the C2-ceramide-bound and -unbound forms were determined at 2.2 and 1.4 A resolutions, respectively. PaCD consists of two domains, and the Zn(2+)- and Mg(2+)/Ca(2+)-binding sites are found within the center of the N-terminal domain and the interface between the domains, respectively. The structural comparison between the C2-ceramide-bound and unbound forms revealed an open-closed conformational change occurring to loop I upon binding of C2-ceramide. In the closed state, this loop sits above the Zn(2+) coordination site and over the opening to the substrate binding site. Mutational analyses of residues surrounding the Zn(2+) of PaCD and rat neutral CDase revealed that the cleavage or creation of the N-acyl linkage of ceramide follows a similar mechanism as observed for the Zn(2+)-dependent carboxypeptidases. The results provide an understanding of the molecular mechanism of hydrolysis and synthesis of ceramide by the enzyme. Furthermore, insights into the actions of PaCD and eukaryotic neutral CDases as an exotoxin and mediators of sphingolipid signaling are also revealed, respectively. Mechanistic insights into the hydrolysis and synthesis of ceramide by neutral ceramidase.,Inoue T, Okino N, Kakuta Y, Hijikata A, Okano H, Goda HM, Tani M, Sueyoshi N, Kambayashi K, Matsumura H, Kai Y, Ito M J Biol Chem. 2009 Apr 3;284(14):9566-77. Epub 2008 Dec 16. PMID:19088069[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|