2np0: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "2np0" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:2np0.png|left|200px]]
==Crystal structure of the Botulinum neurotoxin type B complexed with synaptotagamin-II ectodomain==
<StructureSection load='2np0' size='340' side='right' caption='[[2np0]], [[Resolution|resolution]] 2.62&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2np0]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Clostridium_botulinum Clostridium botulinum] and [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NP0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2NP0 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Syt2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 Mus musculus])</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Bontoxilysin Bontoxilysin], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.24.69 3.4.24.69] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2np0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2np0 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2np0 RCSB], [http://www.ebi.ac.uk/pdbsum/2np0 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/np/2np0_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Botulinum neurotoxins (BoNTs) are potent bacterial toxins that cause paralysis at femtomolar concentrations by blocking neurotransmitter release. A 'double receptor' model has been proposed in which BoNTs recognize nerve terminals via interactions with both gangliosides and protein receptors that mediate their entry. Of seven BoNTs (subtypes A-G), the putative receptors for BoNT/A, BoNT/B and BoNT/G have been identified, but the molecular details that govern recognition remain undefined. Here we report the crystal structure of full-length BoNT/B in complex with the synaptotagmin II (Syt-II) recognition domain at 2.6 A resolution. The structure of the complex reveals that Syt-II forms a short helix that binds to a hydrophobic groove within the binding domain of BoNT/B. In addition, mutagenesis of amino acid residues within this interface on Syt-II affects binding of BoNT/B. Structural and sequence analysis reveals that this hydrophobic groove is conserved in the BoNT/G and BoNT/B subtypes, but varies in other clostridial neurotoxins. Furthermore, molecular docking studies using the ganglioside G(T1b) indicate that its binding site is more extensive than previously proposed and might form contacts with both BoNT/B and synaptotagmin. The results provide structural insights into how BoNTs recognize protein receptors and reveal a promising target for blocking toxin-receptor recognition.


{{STRUCTURE_2np0|  PDB=2np0  |  SCENE=  }}
Structural basis of cell surface receptor recognition by botulinum neurotoxin B.,Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapman ER, Stevens RC Nature. 2006 Dec 21;444(7122):1096-100. Epub 2006 Dec 13. PMID:17167418<ref>PMID:17167418</ref>


===Crystal structure of the Botulinum neurotoxin type B complexed with synaptotagamin-II ectodomain===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_17167418}}
== References ==
 
<references/>
==About this Structure==
__TOC__
[[2np0]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Clostridium_botulinum Clostridium botulinum] and [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NP0 OCA].
</StructureSection>
 
==Reference==
<ref group="xtra">PMID:017167418</ref><references group="xtra"/>
[[Category: Bontoxilysin]]
[[Category: Bontoxilysin]]
[[Category: Clostridium botulinum]]
[[Category: Clostridium botulinum]]

Revision as of 22:14, 30 September 2014

Crystal structure of the Botulinum neurotoxin type B complexed with synaptotagamin-II ectodomainCrystal structure of the Botulinum neurotoxin type B complexed with synaptotagamin-II ectodomain

Structural highlights

2np0 is a 2 chain structure with sequence from Clostridium botulinum and Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Gene:Syt2 (Mus musculus)
Activity:Bontoxilysin, with EC number 3.4.24.69
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Botulinum neurotoxins (BoNTs) are potent bacterial toxins that cause paralysis at femtomolar concentrations by blocking neurotransmitter release. A 'double receptor' model has been proposed in which BoNTs recognize nerve terminals via interactions with both gangliosides and protein receptors that mediate their entry. Of seven BoNTs (subtypes A-G), the putative receptors for BoNT/A, BoNT/B and BoNT/G have been identified, but the molecular details that govern recognition remain undefined. Here we report the crystal structure of full-length BoNT/B in complex with the synaptotagmin II (Syt-II) recognition domain at 2.6 A resolution. The structure of the complex reveals that Syt-II forms a short helix that binds to a hydrophobic groove within the binding domain of BoNT/B. In addition, mutagenesis of amino acid residues within this interface on Syt-II affects binding of BoNT/B. Structural and sequence analysis reveals that this hydrophobic groove is conserved in the BoNT/G and BoNT/B subtypes, but varies in other clostridial neurotoxins. Furthermore, molecular docking studies using the ganglioside G(T1b) indicate that its binding site is more extensive than previously proposed and might form contacts with both BoNT/B and synaptotagmin. The results provide structural insights into how BoNTs recognize protein receptors and reveal a promising target for blocking toxin-receptor recognition.

Structural basis of cell surface receptor recognition by botulinum neurotoxin B.,Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapman ER, Stevens RC Nature. 2006 Dec 21;444(7122):1096-100. Epub 2006 Dec 13. PMID:17167418[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapman ER, Stevens RC. Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature. 2006 Dec 21;444(7122):1096-100. Epub 2006 Dec 13. PMID:17167418 doi:10.1038/nature05411

2np0, resolution 2.62Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA