1gto: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "1gto" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:1gto.png|left|200px]]
==HIGH RESOLUTION STRUCTURE OF A HYPERSTABLE HELICAL BUNDLE PROTEIN MUTANT==
<StructureSection load='1gto' size='340' side='right' caption='[[1gto]], [[Resolution|resolution]] 1.82&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1gto]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GTO OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1GTO FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1gto FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gto OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1gto RCSB], [http://www.ebi.ac.uk/pdbsum/1gto PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gt/1gto_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
A surface turn position in a four-helix bundle protein, Rop, was selected to investigate the role of turns in protein structure and stability. Although all twenty amino acids can be substituted at this position to generate a correctly folded protein, they produce an unusually large range of thermodynamic stabilities. Moreover, the majority of substitutions give rise to proteins with enhanced thermal stability compared to that of the wild type. By introducing the same twenty mutations at this position, but in a simplified context, we were able to deconvolute intrinsic preferences from local environmental effects. The intrinsic preferences can be explained on the basis of preferred backbone dihedral angles, but local environmental context can significantly modify these effects.


{{STRUCTURE_1gto|  PDB=1gto  |  SCENE=  }}
Amino-acid substitutions in a surface turn modulate protein stability.,Predki PF, Agrawal V, Brunger AT, Regan L Nat Struct Biol. 1996 Jan;3(1):54-8. PMID:8548455<ref>PMID:8548455</ref>


===HIGH RESOLUTION STRUCTURE OF A HYPERSTABLE HELICAL BUNDLE PROTEIN MUTANT===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


{{ABSTRACT_PUBMED_8548455}}
==See Also==
 
*[[Rop protein|Rop protein]]
==About this Structure==
== References ==
[[1gto]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GTO OCA].
<references/>
 
__TOC__
==Reference==
</StructureSection>
<ref group="xtra">PMID:008548455</ref><references group="xtra"/>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Agrawal, V.]]
[[Category: Agrawal, V.]]

Revision as of 17:35, 28 September 2014

HIGH RESOLUTION STRUCTURE OF A HYPERSTABLE HELICAL BUNDLE PROTEIN MUTANTHIGH RESOLUTION STRUCTURE OF A HYPERSTABLE HELICAL BUNDLE PROTEIN MUTANT

Structural highlights

1gto is a 3 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

A surface turn position in a four-helix bundle protein, Rop, was selected to investigate the role of turns in protein structure and stability. Although all twenty amino acids can be substituted at this position to generate a correctly folded protein, they produce an unusually large range of thermodynamic stabilities. Moreover, the majority of substitutions give rise to proteins with enhanced thermal stability compared to that of the wild type. By introducing the same twenty mutations at this position, but in a simplified context, we were able to deconvolute intrinsic preferences from local environmental effects. The intrinsic preferences can be explained on the basis of preferred backbone dihedral angles, but local environmental context can significantly modify these effects.

Amino-acid substitutions in a surface turn modulate protein stability.,Predki PF, Agrawal V, Brunger AT, Regan L Nat Struct Biol. 1996 Jan;3(1):54-8. PMID:8548455[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Predki PF, Agrawal V, Brunger AT, Regan L. Amino-acid substitutions in a surface turn modulate protein stability. Nat Struct Biol. 1996 Jan;3(1):54-8. PMID:8548455

1gto, resolution 1.82Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA