1a6i: Difference between revisions
m Protected "1a6i" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==TET REPRESSOR, CLASS D VARIANT== | ||
<StructureSection load='1a6i' size='340' side='right' caption='[[1a6i]], [[Resolution|resolution]] 2.40Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1a6i]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A6I OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1A6I FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1a6i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a6i OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1a6i RCSB], [http://www.ebi.ac.uk/pdbsum/1a6i PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a6/1a6i_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The X-ray crystal structure analysis of inducer-free Tet repressor, TetR, at 2.4 A resolution identifies one of two openings of the tunnel-like binding site as the entrance for the inducer tetracycline-Mg2+, [Mg Tc]+. Recognition and binding of the inducer unleashes conformational changes leading to the induced state of TetR. In the first step, the C-terminal turn of alpha-helix 6 unwinds, thereby altering the orientation of alpha-helix 4. This different orientation of alpha-helix 4 is stabilized by a series of hydrogen bonds mediated through a chain of eight water molecules. The alpha-helix 4 connects the DNA-binding domain (alpha-helices 1 to 3) to the rigid TetR core, and thus regulates gene expression through its respective orientations. | |||
Conformational changes of the Tet repressor induced by tetracycline trapping.,Orth P, Cordes F, Schnappinger D, Hillen W, Saenger W, Hinrichs W J Mol Biol. 1998 Jun 5;279(2):439-47. PMID:9642048<ref>PMID:9642048</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | |||
*[[Tetracycline repressor protein|Tetracycline repressor protein]] | |||
== | == References == | ||
[[ | <references/> | ||
__TOC__ | |||
== | </StructureSection> | ||
< | |||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Cordes, F.]] | [[Category: Cordes, F.]] |
Revision as of 11:29, 23 July 2014
TET REPRESSOR, CLASS D VARIANTTET REPRESSOR, CLASS D VARIANT
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe X-ray crystal structure analysis of inducer-free Tet repressor, TetR, at 2.4 A resolution identifies one of two openings of the tunnel-like binding site as the entrance for the inducer tetracycline-Mg2+, [Mg Tc]+. Recognition and binding of the inducer unleashes conformational changes leading to the induced state of TetR. In the first step, the C-terminal turn of alpha-helix 6 unwinds, thereby altering the orientation of alpha-helix 4. This different orientation of alpha-helix 4 is stabilized by a series of hydrogen bonds mediated through a chain of eight water molecules. The alpha-helix 4 connects the DNA-binding domain (alpha-helices 1 to 3) to the rigid TetR core, and thus regulates gene expression through its respective orientations. Conformational changes of the Tet repressor induced by tetracycline trapping.,Orth P, Cordes F, Schnappinger D, Hillen W, Saenger W, Hinrichs W J Mol Biol. 1998 Jun 5;279(2):439-47. PMID:9642048[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|