1ceg: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==CEPHALOTHIN COMPLEXED WITH DD-PEPTIDASE== | ||
<StructureSection load='1ceg' size='340' side='right' caption='[[1ceg]], [[Resolution|resolution]] 1.80Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1ceg]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Streptomyces_sp. Streptomyces sp.]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CEG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1CEG FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CEP:CEPHALOTHIN+GROUP'>CEP</scene><br> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Serine-type_D-Ala-D-Ala_carboxypeptidase Serine-type D-Ala-D-Ala carboxypeptidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.16.4 3.4.16.4] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ceg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ceg OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ceg RCSB], [http://www.ebi.ac.uk/pdbsum/1ceg PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ce/1ceg_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Two clinically-important beta-lactam antibiotics, cephalothin and cefotaxime, have been observed by X-ray crystallography bound to the reactive Ser62 of the D-alanyl-D-alanine carboxypeptidase/transpeptidase of Streptomyces sp. R61. Refinement of the two crystal structures produced R factors for 3 sigma (F) data of 0.166 (to 1.8 A) and 0.170 (to 2.0 A) for the cephalothin and cefotaxime complexes, respectively. In each complex, a water molecule is within 3.1 and 3.6 A of the acylated beta-lactam carbonyl carbon atom, but is poorly activated by active site residues for nucleophilic attack and deacylation. This apparent lack of good stereochemistry for facile hydrolysis is in accord with the long half-lives of cephalosporin intermediates in solution (20-40 h) and the efficacy of these beta-lactams as inhibitors of bacterial cell wall synthesis. Different hydrogen binding patterns of the two cephalosporins to Thr301 are consistent with the low cefotaxime affinity of an altered penicillin-binding protein, PBP-2x, reported in cefotaxime-resistant strains of Streptococcus pneumoniae, and with the ability of mutant class A beta-lactamases to hydrolyze third-generation cephalosporins. | |||
Binding of cephalothin and cefotaxime to D-ala-D-ala-peptidase reveals a functional basis of a natural mutation in a low-affinity penicillin-binding protein and in extended-spectrum beta-lactamases.,Kuzin AP, Liu H, Kelly JA, Knox JR Biochemistry. 1995 Jul 25;34(29):9532-40. PMID:7626623<ref>PMID:7626623</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Penicillin-binding protein|Penicillin-binding protein]] | *[[Penicillin-binding protein|Penicillin-binding protein]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Serine-type D-Ala-D-Ala carboxypeptidase]] | [[Category: Serine-type D-Ala-D-Ala carboxypeptidase]] | ||
[[Category: Streptomyces sp.]] | [[Category: Streptomyces sp.]] |
Revision as of 19:57, 20 August 2014
CEPHALOTHIN COMPLEXED WITH DD-PEPTIDASECEPHALOTHIN COMPLEXED WITH DD-PEPTIDASE
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTwo clinically-important beta-lactam antibiotics, cephalothin and cefotaxime, have been observed by X-ray crystallography bound to the reactive Ser62 of the D-alanyl-D-alanine carboxypeptidase/transpeptidase of Streptomyces sp. R61. Refinement of the two crystal structures produced R factors for 3 sigma (F) data of 0.166 (to 1.8 A) and 0.170 (to 2.0 A) for the cephalothin and cefotaxime complexes, respectively. In each complex, a water molecule is within 3.1 and 3.6 A of the acylated beta-lactam carbonyl carbon atom, but is poorly activated by active site residues for nucleophilic attack and deacylation. This apparent lack of good stereochemistry for facile hydrolysis is in accord with the long half-lives of cephalosporin intermediates in solution (20-40 h) and the efficacy of these beta-lactams as inhibitors of bacterial cell wall synthesis. Different hydrogen binding patterns of the two cephalosporins to Thr301 are consistent with the low cefotaxime affinity of an altered penicillin-binding protein, PBP-2x, reported in cefotaxime-resistant strains of Streptococcus pneumoniae, and with the ability of mutant class A beta-lactamases to hydrolyze third-generation cephalosporins. Binding of cephalothin and cefotaxime to D-ala-D-ala-peptidase reveals a functional basis of a natural mutation in a low-affinity penicillin-binding protein and in extended-spectrum beta-lactamases.,Kuzin AP, Liu H, Kelly JA, Knox JR Biochemistry. 1995 Jul 25;34(29):9532-40. PMID:7626623[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|