2br2: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:2br2.png|left|200px]]
==RNASE PH CORE OF THE ARCHAEAL EXOSOME==
<StructureSection load='2br2' size='340' side='right' caption='[[2br2]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2br2]] is a 24 chain structure with sequence from [http://en.wikipedia.org/wiki/Sulfolobus_solfataricus Sulfolobus solfataricus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BR2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2BR2 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene><br>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2br2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2br2 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2br2 RCSB], [http://www.ebi.ac.uk/pdbsum/2br2 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/br/2br2_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The exosome is a 3' --&gt; 5' exoribonuclease complex involved in RNA processing. We report the crystal structure of the RNase PH core complex of the Sulfolobus solfataricus exosome determined at a resolution of 2.8 A. The structure reveals a hexameric ring-like arrangement of three Rrp41-Rrp42 heterodimers, where both subunits adopt the RNase PH fold common to phosphorolytic exoribonucleases. Structure-guided mutagenesis reveals that the activity of the complex resides within the active sites of the Rrp41 subunits, all three of which face the same side of the hexameric structure. The Rrp42 subunit is inactive but contributes to the structuring of the Rrp41 active site. The high sequence similarity of this archaeal exosome to eukaryotic exosomes and its high structural similarity to the bacterial mRNA-degrading PNPase support a common basis for RNA-degrading machineries in all three domains of life.


{{STRUCTURE_2br2|  PDB=2br2  |  SCENE=  }}
The archaeal exosome core is a hexameric ring structure with three catalytic subunits.,Lorentzen E, Walter P, Fribourg S, Evguenieva-Hackenberg E, Klug G, Conti E Nat Struct Mol Biol. 2005 Jul;12(7):575-81. Epub 2005 Jun 12. PMID:15951817<ref>PMID:15951817</ref>


===RNASE PH CORE OF THE ARCHAEAL EXOSOME===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_15951817}}
 
==About this Structure==
[[2br2]] is a 24 chain structure with sequence from [http://en.wikipedia.org/wiki/Sulfolobus_solfataricus Sulfolobus solfataricus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BR2 OCA].


==See Also==
==See Also==
*[[Exonuclease|Exonuclease]]
*[[Exonuclease|Exonuclease]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:015951817</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Sulfolobus solfataricus]]
[[Category: Sulfolobus solfataricus]]
[[Category: Conti, E.]]
[[Category: Conti, E.]]

Revision as of 07:29, 29 September 2014

RNASE PH CORE OF THE ARCHAEAL EXOSOMERNASE PH CORE OF THE ARCHAEAL EXOSOME

Structural highlights

2br2 is a 24 chain structure with sequence from Sulfolobus solfataricus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The exosome is a 3' --> 5' exoribonuclease complex involved in RNA processing. We report the crystal structure of the RNase PH core complex of the Sulfolobus solfataricus exosome determined at a resolution of 2.8 A. The structure reveals a hexameric ring-like arrangement of three Rrp41-Rrp42 heterodimers, where both subunits adopt the RNase PH fold common to phosphorolytic exoribonucleases. Structure-guided mutagenesis reveals that the activity of the complex resides within the active sites of the Rrp41 subunits, all three of which face the same side of the hexameric structure. The Rrp42 subunit is inactive but contributes to the structuring of the Rrp41 active site. The high sequence similarity of this archaeal exosome to eukaryotic exosomes and its high structural similarity to the bacterial mRNA-degrading PNPase support a common basis for RNA-degrading machineries in all three domains of life.

The archaeal exosome core is a hexameric ring structure with three catalytic subunits.,Lorentzen E, Walter P, Fribourg S, Evguenieva-Hackenberg E, Klug G, Conti E Nat Struct Mol Biol. 2005 Jul;12(7):575-81. Epub 2005 Jun 12. PMID:15951817[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lorentzen E, Walter P, Fribourg S, Evguenieva-Hackenberg E, Klug G, Conti E. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol. 2005 Jul;12(7):575-81. Epub 2005 Jun 12. PMID:15951817 doi:10.1038/nsmb952

2br2, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA