2ou0: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==1-methylpyrrole in complex with T4 Lysozyme L99A== | ||
<StructureSection load='2ou0' size='340' side='right' caption='[[2ou0]], [[Resolution|resolution]] 1.94Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2ou0]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t4 Enterobacteria phage t4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OU0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2OU0 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MR3:1-METHYL-1H-PYRROLE'>MR3</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[181l|181l]]</td></tr> | |||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">E ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10665 Enterobacteria phage T4])</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ou0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ou0 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ou0 RCSB], [http://www.ebi.ac.uk/pdbsum/2ou0 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ou/2ou0_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
A central challenge in structure-based ligand design is the accurate prediction of binding free energies. Here we apply alchemical free energy calculations in explicit solvent to predict ligand binding in a model cavity in T4 lysozyme. Even in this simple site, there are challenges. We made systematic improvements, beginning with single poses from docking, then including multiple poses, additional protein conformational changes, and using an improved charge model. Computed absolute binding free energies had an RMS error of 1.9 kcal/mol relative to previously determined experimental values. In blind prospective tests, the methods correctly discriminated between several true ligands and decoys in a set of putative binders identified by docking. In these prospective tests, the RMS error in predicted binding free energies relative to those subsequently determined experimentally was only 0.6 kcal/mol. X-ray crystal structures of the new ligands bound in the cavity corresponded closely to predictions from the free energy calculations, but sometimes differed from those predicted by docking. Finally, we examined the impact of holding the protein rigid, as in docking, with a view to learning how approximations made in docking affect accuracy and how they may be improved. | |||
Predicting absolute ligand binding free energies to a simple model site.,Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA J Mol Biol. 2007 Aug 24;371(4):1118-34. Epub 2007 Jun 8. PMID:17599350<ref>PMID:17599350</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[ | *[[Lysozyme 3D structures|Lysozyme 3D structures]] | ||
*[[PDB identification code|PDB identification code]] | |||
== | == References == | ||
< | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: Enterobacteria phage t4]] | [[Category: Enterobacteria phage t4]] | ||
[[Category: Lysozyme]] | [[Category: Lysozyme]] |
Revision as of 12:55, 29 September 2014
1-methylpyrrole in complex with T4 Lysozyme L99A1-methylpyrrole in complex with T4 Lysozyme L99A
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedA central challenge in structure-based ligand design is the accurate prediction of binding free energies. Here we apply alchemical free energy calculations in explicit solvent to predict ligand binding in a model cavity in T4 lysozyme. Even in this simple site, there are challenges. We made systematic improvements, beginning with single poses from docking, then including multiple poses, additional protein conformational changes, and using an improved charge model. Computed absolute binding free energies had an RMS error of 1.9 kcal/mol relative to previously determined experimental values. In blind prospective tests, the methods correctly discriminated between several true ligands and decoys in a set of putative binders identified by docking. In these prospective tests, the RMS error in predicted binding free energies relative to those subsequently determined experimentally was only 0.6 kcal/mol. X-ray crystal structures of the new ligands bound in the cavity corresponded closely to predictions from the free energy calculations, but sometimes differed from those predicted by docking. Finally, we examined the impact of holding the protein rigid, as in docking, with a view to learning how approximations made in docking affect accuracy and how they may be improved. Predicting absolute ligand binding free energies to a simple model site.,Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA J Mol Biol. 2007 Aug 24;371(4):1118-34. Epub 2007 Jun 8. PMID:17599350[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|