2vmf: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==STRUCTURAL AND BIOCHEMICAL EVIDENCE FOR A BOAT-LIKE TRANSITION STATE IN BETA-MANNOSIDASES== | ||
<StructureSection load='2vmf' size='340' side='right' caption='[[2vmf]], [[Resolution|resolution]] 2.10Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2vmf]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacteroides_thetaiotaomicron Bacteroides thetaiotaomicron]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VMF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2VMF FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BR:BROMIDE+ION'>BR</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MVL:(5R,6R,7S,8R)-5-(HYDROXYMETHYL)-5,6,7,8-TETRAHYDROIMIDAZO[1,2-A]PYRIDINE-6,7,8-TRIOL'>MVL</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2vqt|2vqt]], [[2vot|2vot]], [[2vl4|2vl4]], [[2vqu|2vqu]], [[2vo5|2vo5]], [[2je8|2je8]], [[2vjx|2vjx]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-mannosidase Beta-mannosidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.25 3.2.1.25] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2vmf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2vmf OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2vmf RCSB], [http://www.ebi.ac.uk/pdbsum/2vmf PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vm/2vmf_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Enzyme inhibition through mimicry of the transition state is a major area for the design of new therapeutic agents. Emerging evidence suggests that many retaining glycosidases that are active on alpha- or beta-mannosides harness unusual B2,5 (boat) transition states. Here we present the analysis of 25 putative beta-mannosidase inhibitors, whose Ki values range from nanomolar to millimolar, on the Bacteroides thetaiotaomicron beta-mannosidase BtMan2A. B2,5 or closely related conformations were observed for all tightly binding compounds. Subsequent linear free energy relationships that correlate log Ki with log Km/kcat for a series of active center variants highlight aryl-substituted mannoimidazoles as powerful transition state mimics in which the binding energy of the aryl group enhances both binding and the degree of transition state mimicry. Support for a B2,5 transition state during enzymatic beta-mannosidase hydrolysis should also facilitate the design and exploitation of transition state mimics for the inhibition of retaining alpha-mannosidases--an area that is emerging for anticancer therapeutics. | |||
Structural and biochemical evidence for a boat-like transition state in beta-mannosidases.,Tailford LE, Offen WA, Smith NL, Dumon C, Morland C, Gratien J, Heck MP, Stick RV, Bleriot Y, Vasella A, Gilbert HJ, Davies GJ Nat Chem Biol. 2008 May;4(5):306-12. PMID:18408714<ref>PMID:18408714</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Mannosidase|Mannosidase]] | *[[Mannosidase|Mannosidase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Bacteroides thetaiotaomicron]] | [[Category: Bacteroides thetaiotaomicron]] | ||
[[Category: Beta-mannosidase]] | [[Category: Beta-mannosidase]] |
Revision as of 11:21, 29 September 2014
STRUCTURAL AND BIOCHEMICAL EVIDENCE FOR A BOAT-LIKE TRANSITION STATE IN BETA-MANNOSIDASESSTRUCTURAL AND BIOCHEMICAL EVIDENCE FOR A BOAT-LIKE TRANSITION STATE IN BETA-MANNOSIDASES
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedEnzyme inhibition through mimicry of the transition state is a major area for the design of new therapeutic agents. Emerging evidence suggests that many retaining glycosidases that are active on alpha- or beta-mannosides harness unusual B2,5 (boat) transition states. Here we present the analysis of 25 putative beta-mannosidase inhibitors, whose Ki values range from nanomolar to millimolar, on the Bacteroides thetaiotaomicron beta-mannosidase BtMan2A. B2,5 or closely related conformations were observed for all tightly binding compounds. Subsequent linear free energy relationships that correlate log Ki with log Km/kcat for a series of active center variants highlight aryl-substituted mannoimidazoles as powerful transition state mimics in which the binding energy of the aryl group enhances both binding and the degree of transition state mimicry. Support for a B2,5 transition state during enzymatic beta-mannosidase hydrolysis should also facilitate the design and exploitation of transition state mimics for the inhibition of retaining alpha-mannosidases--an area that is emerging for anticancer therapeutics. Structural and biochemical evidence for a boat-like transition state in beta-mannosidases.,Tailford LE, Offen WA, Smith NL, Dumon C, Morland C, Gratien J, Heck MP, Stick RV, Bleriot Y, Vasella A, Gilbert HJ, Davies GJ Nat Chem Biol. 2008 May;4(5):306-12. PMID:18408714[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|