2bcv: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:2bcv.png|left|200px]]
==DNA polymerase lambda in complex with Dttp and a DNA duplex containing an unpaired Dtmp==
<StructureSection load='2bcv' size='340' side='right' caption='[[2bcv]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2bcv]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BCV OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2BCV FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=TTP:THYMIDINE-5-TRIPHOSPHATE'>TTP</scene><br>
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=O2C:3-DEOXY-CYTIDINE-5-MONOPHOSPHATE'>O2C</scene></td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2bcq|2bcq]], [[2bcr|2bcr]], [[2bcs|2bcs]], [[2bcu|2bcu]]</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2bcv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2bcv OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2bcv RCSB], [http://www.ebi.ac.uk/pdbsum/2bcv PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bc/2bcv_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Insertions and deletions in coding sequences can alter the reading frame of genes and have profound biological consequences. In 1966, Streisinger proposed that these mutations result from strand slippage, which in repetitive sequences generates misaligned intermediates stabilized by correct base pairing that support polymerization. We report here crystal structures of human DNA polymerase lambda, which frequently generates deletion mutations, bound to such intermediates. Each contains an extrahelical template nucleotide upstream of the active site. Surprisingly, the extra nucleotide, even when combined with an adjacent mismatch, does not perturb polymerase active site geometry, which is indistinguishable from that for correctly aligned strands. These structures reveal how pol lambda can polymerize on substrates with minimal homology during repair of double-strand breaks and represent strand-slippage intermediates consistent with Streisinger's classical hypothesis. They are thus relevant to the origin of single-base deletions, a class of mutations that can confer strong biological phenotypes.


{{STRUCTURE_2bcv|  PDB=2bcv  |  SCENE=  }}
Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase.,Garcia-Diaz M, Bebenek K, Krahn JM, Pedersen LC, Kunkel TA Cell. 2006 Jan 27;124(2):331-42. PMID:16439207<ref>PMID:16439207</ref>


===DNA polymerase lambda in complex with Dttp and a DNA duplex containing an unpaired Dtmp===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_16439207}}
 
==About this Structure==
[[2bcv]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BCV OCA].


==See Also==
==See Also==
*[[DNA polymerase|DNA polymerase]]
*[[DNA polymerase|DNA polymerase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:016439207</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Bebenek, K.]]
[[Category: Bebenek, K.]]

Revision as of 07:13, 29 September 2014

DNA polymerase lambda in complex with Dttp and a DNA duplex containing an unpaired DtmpDNA polymerase lambda in complex with Dttp and a DNA duplex containing an unpaired Dtmp

Structural highlights

2bcv is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
NonStd Res:
Related:2bcq, 2bcr, 2bcs, 2bcu
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Insertions and deletions in coding sequences can alter the reading frame of genes and have profound biological consequences. In 1966, Streisinger proposed that these mutations result from strand slippage, which in repetitive sequences generates misaligned intermediates stabilized by correct base pairing that support polymerization. We report here crystal structures of human DNA polymerase lambda, which frequently generates deletion mutations, bound to such intermediates. Each contains an extrahelical template nucleotide upstream of the active site. Surprisingly, the extra nucleotide, even when combined with an adjacent mismatch, does not perturb polymerase active site geometry, which is indistinguishable from that for correctly aligned strands. These structures reveal how pol lambda can polymerize on substrates with minimal homology during repair of double-strand breaks and represent strand-slippage intermediates consistent with Streisinger's classical hypothesis. They are thus relevant to the origin of single-base deletions, a class of mutations that can confer strong biological phenotypes.

Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase.,Garcia-Diaz M, Bebenek K, Krahn JM, Pedersen LC, Kunkel TA Cell. 2006 Jan 27;124(2):331-42. PMID:16439207[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Garcia-Diaz M, Bebenek K, Krahn JM, Pedersen LC, Kunkel TA. Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase. Cell. 2006 Jan 27;124(2):331-42. PMID:16439207 doi:10.1016/j.cell.2005.10.039

2bcv, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA