3f34: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:3f34.png|left|200px]]
==Apoferritin: complex with 2,6-diethylphenol==
<StructureSection load='3f34' size='340' side='right' caption='[[3f34]], [[Resolution|resolution]] 1.68&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3f34]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Equus_caballus Equus caballus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3F34 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3F34 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=DIE:2,6-DIETHYLPHENOL'>DIE</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1xz1|1xz1]], [[1xz3|1xz3]], [[3f32|3f32]], [[3f33|3f33]], [[3f35|3f35]], [[3f36|3f36]], [[3f37|3f37]], [[3f38|3f38]], [[3f39|3f39]]</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3f34 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3f34 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3f34 RCSB], [http://www.ebi.ac.uk/pdbsum/3f34 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f3/3f34_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA(A) receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA(A) receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA(A) receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.


{{STRUCTURE_3f34|  PDB=3f34  |  SCENE=  }}
A unitary anesthetic binding site at high resolution.,Vedula LS, Brannigan G, Economou NJ, Xi J, Hall MA, Liu R, Rossi MJ, Dailey WP, Grasty KC, Klein ML, Eckenhoff RG, Loll PJ J Biol Chem. 2009 Sep 4;284(36):24176-84. Epub 2009 Jul 15. PMID:19605349<ref>PMID:19605349</ref>


===Apoferritin: complex with 2,6-diethylphenol===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_19605349}}
 
==About this Structure==
[[3f34]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Equus_caballus Equus caballus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3F34 OCA].


==See Also==
==See Also==
*[[Ferritin|Ferritin]]
*[[Ferritin|Ferritin]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:019605349</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Equus caballus]]
[[Category: Equus caballus]]
[[Category: Eckenhoff, R G.]]
[[Category: Eckenhoff, R G.]]

Revision as of 13:50, 29 September 2014

Apoferritin: complex with 2,6-diethylphenolApoferritin: complex with 2,6-diethylphenol

Structural highlights

3f34 is a 1 chain structure with sequence from Equus caballus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Related:1xz1, 1xz3, 3f32, 3f33, 3f35, 3f36, 3f37, 3f38, 3f39
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA(A) receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA(A) receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA(A) receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

A unitary anesthetic binding site at high resolution.,Vedula LS, Brannigan G, Economou NJ, Xi J, Hall MA, Liu R, Rossi MJ, Dailey WP, Grasty KC, Klein ML, Eckenhoff RG, Loll PJ J Biol Chem. 2009 Sep 4;284(36):24176-84. Epub 2009 Jul 15. PMID:19605349[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Vedula LS, Brannigan G, Economou NJ, Xi J, Hall MA, Liu R, Rossi MJ, Dailey WP, Grasty KC, Klein ML, Eckenhoff RG, Loll PJ. A unitary anesthetic binding site at high resolution. J Biol Chem. 2009 Sep 4;284(36):24176-84. Epub 2009 Jul 15. PMID:19605349 doi:10.1074/jbc.M109.017814

3f34, resolution 1.68Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA