3dft: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:
[[Image:3dft.png|left|200px]]
==Phosphate ions in D33S mutant fructose-1,6-bisphosphate aldolase from rabbit muscle==
<StructureSection load='3dft' size='340' side='right' caption='[[3dft]], [[Resolution|resolution]] 1.94&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3dft]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DFT OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3DFT FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3dfn|3dfn]], [[3dfo|3dfo]], [[3dfp|3dfp]], [[3dfq|3dfq]], [[3dfs|3dfs]]</td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ALDOA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9986 Oryctolagus cuniculus])</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Fructose-bisphosphate_aldolase Fructose-bisphosphate aldolase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.1.2.13 4.1.2.13] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3dft FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3dft OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3dft RCSB], [http://www.ebi.ac.uk/pdbsum/3dft PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/df/3dft_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Fructose-1,6-bisphosphate muscle aldolase is an essential glycolytic enzyme that catalyzes reversible carbon-carbon bond formation by cleaving fructose 1,6-bisphosphate to yield dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde phosphate. To elucidate the mechanistic role of conserved amino acid Asp-33, Asn-33 and Ser-33 mutants were examined by kinetic and structural analyses. The mutations significantly compromised enzymatic activity and carbanion oxidation in presence of DHAP. Detailed structural analysis demonstrated that, like native crystals, Asp-33 mutant crystals, soaked in DHAP solutions, trapped Schiff base-derived intermediates covalently attached to Lys-229. The mutant structures, however, exhibited an abridged conformational change with the helical region (34-65) flanking the active site as well as pK(a) reductions and increased side chain disorder by central lysine residues, Lys-107 and Lys-146. These changes directly affect their interaction with the C-terminal Tyr-363, consistent with the absence of active site binding by the C-terminal region in the presence of phosphate. Lys-146 pK(a) reduction and side chain disorder would further compromise charge stabilization during C-C bond cleavage and proton transfer during enamine formation. These mechanistic impediments explain diminished catalytic activity and a reduced level of carbanion oxidation and are consistent with rate-determining proton transfer observed in the Asn-33 mutant. Asp-33 reduces the entropic cost and augments the enthalpic gain during catalysis by rigidifying Lys-107 and Lys-146, stabilizing their protonated forms, and promoting a conformational change triggered by substrate or obligate product binding, which lower kinetic barriers in C-C bond cleavage and Schiff base-enamine interconversion.


{{STRUCTURE_3dft|  PDB=3dft  |  SCENE=  }}
Charge Stabilization and Entropy Reduction of Central Lysine Residues in Fructose-Bisphosphate Aldolase.,St-Jean M, Blonski C, Sygusch J Biochemistry. 2009 Apr 22. PMID:19354220<ref>PMID:19354220</ref>


===Phosphate ions in D33S mutant fructose-1,6-bisphosphate aldolase from rabbit muscle===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_19354220}}
 
==About this Structure==
[[3dft]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DFT OCA].


==See Also==
==See Also==
*[[Aldolase|Aldolase]]
*[[Aldolase|Aldolase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:019354220</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Fructose-bisphosphate aldolase]]
[[Category: Fructose-bisphosphate aldolase]]
[[Category: Oryctolagus cuniculus]]
[[Category: Oryctolagus cuniculus]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA