1sn1: Difference between revisions
m Protected "1sn1" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==STRUCTURE OF SCORPION NEUROTOXIN BMK M1== | ||
<StructureSection load='1sn1' size='340' side='right' caption='[[1sn1]], [[Resolution|resolution]] 1.70Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1sn1]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Mesobuthus_martensii Mesobuthus martensii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SN1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1SN1 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1sn4|1sn4]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1sn1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sn1 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1sn1 RCSB], [http://www.ebi.ac.uk/pdbsum/1sn1 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sn/1sn1_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The crystal structures of two group III alpha-like toxins from the scorpion Buthus martensii Karsch, BmK M1 and BmK M4, were determined at 1.7 A and 1.3 A resolution and refined to R factors of 0.169 and 0.166, respectively. The first high-resolution structures of the alpha-like scorpion toxin show some striking features compared with structures of the "classical" alpha-toxin. Firstly, a non-proline cis peptide bond between residues 9 and 10 unusually occurs in the five-member reverse turn 8-12. Secondly, the cis peptide 9-10 mediates the spatial relationship between the turn 8-12 and the C-terminal stretch 58-64 through a pair of main-chain hydrogen bonds between residues 10 and 64 to form a unique tertiary arrangement which features the special orientation of the terminal residues 62-64. Finally, in consequence of the peculiar orientation of the C-terminal residues, the functional groups of Arg58, which are crucial for the toxin-receptor interaction, are exposed and accessible in BmK M1 and M4 rather than buried as in the classical alpha-toxins. Sequence alignment and characteristics analysis suggested that the above structural features observed in BmK M1 and M4 occur in all group III alpha-like toxins. Recently, some group III alpha-like toxins were demonstrated to occupy a receptor site different from the classical alpha-toxin. Therefore, the distinct structural features of BmK M1 and M4 presented here may provide the structural basis for the newly recognized toxin-receptor binding site selectivity. Besides, the non-proline cis peptide bonds found in these two structures play a role in the formation of the structural characteristics and in keeping accurate positions of the functionally crucial residues. This manifested a way to achieve high levels of molecular specificity and atomic precision through the strained backbone geometry. | |||
Crystal structures of two alpha-like scorpion toxins: non-proline cis peptide bonds and implications for new binding site selectivity on the sodium channel.,He XL, Li HM, Zeng ZH, Liu XQ, Wang M, Wang DC J Mol Biol. 1999 Sep 10;292(1):125-35. PMID:10493862<ref>PMID:10493862</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[ | *[[Potassium channel toxin|Potassium channel toxin]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Mesobuthus martensii]] | [[Category: Mesobuthus martensii]] | ||
[[Category: He, X L.]] | [[Category: He, X L.]] |
Revision as of 22:43, 28 September 2014
STRUCTURE OF SCORPION NEUROTOXIN BMK M1STRUCTURE OF SCORPION NEUROTOXIN BMK M1
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structures of two group III alpha-like toxins from the scorpion Buthus martensii Karsch, BmK M1 and BmK M4, were determined at 1.7 A and 1.3 A resolution and refined to R factors of 0.169 and 0.166, respectively. The first high-resolution structures of the alpha-like scorpion toxin show some striking features compared with structures of the "classical" alpha-toxin. Firstly, a non-proline cis peptide bond between residues 9 and 10 unusually occurs in the five-member reverse turn 8-12. Secondly, the cis peptide 9-10 mediates the spatial relationship between the turn 8-12 and the C-terminal stretch 58-64 through a pair of main-chain hydrogen bonds between residues 10 and 64 to form a unique tertiary arrangement which features the special orientation of the terminal residues 62-64. Finally, in consequence of the peculiar orientation of the C-terminal residues, the functional groups of Arg58, which are crucial for the toxin-receptor interaction, are exposed and accessible in BmK M1 and M4 rather than buried as in the classical alpha-toxins. Sequence alignment and characteristics analysis suggested that the above structural features observed in BmK M1 and M4 occur in all group III alpha-like toxins. Recently, some group III alpha-like toxins were demonstrated to occupy a receptor site different from the classical alpha-toxin. Therefore, the distinct structural features of BmK M1 and M4 presented here may provide the structural basis for the newly recognized toxin-receptor binding site selectivity. Besides, the non-proline cis peptide bonds found in these two structures play a role in the formation of the structural characteristics and in keeping accurate positions of the functionally crucial residues. This manifested a way to achieve high levels of molecular specificity and atomic precision through the strained backbone geometry. Crystal structures of two alpha-like scorpion toxins: non-proline cis peptide bonds and implications for new binding site selectivity on the sodium channel.,He XL, Li HM, Zeng ZH, Liu XQ, Wang M, Wang DC J Mol Biol. 1999 Sep 10;292(1):125-35. PMID:10493862[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|