3lnm: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:3lnm.png|left|200px]]
==F233W mutant of the Kv2.1 paddle-Kv1.2 chimera channel==
<StructureSection load='3lnm' size='340' side='right' caption='[[3lnm]], [[Resolution|resolution]] 2.90&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3lnm]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3LNM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3LNM FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene>, <scene name='pdbligand=PGW:(1R)-2-{[(S)-{[(2S)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPHORYL]OXY}-1-[(HEXADECANOYLOXY)METHYL]ETHYL+(9Z)-OCTADEC-9-ENOATE'>PGW</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2r9r|2r9r]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Ckbeta2, Kcnab2, Kcnb3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Rattus norvegicus]), Kcna2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Rattus norvegicus])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3lnm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3lnm OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3lnm RCSB], [http://www.ebi.ac.uk/pdbsum/3lnm PDBsum]</span></td></tr>
</table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ln/3lnm_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switchlike response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings, and x-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic "cap" and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations, the voltage sensor can be stabilized in different conformations, which enables a dissection of voltage sensor movements and their relation to ion channel opening.


{{STRUCTURE_3lnm|  PDB=3lnm  |  SCENE=  }}
A gating charge transfer center in voltage sensors.,Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R Science. 2010 Apr 2;328(5974):67-73. PMID:20360102<ref>PMID:20360102</ref>


===F233W mutant of the Kv2.1 paddle-Kv1.2 chimera channel===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_20360102}}
 
==About this Structure==
[[3lnm]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3LNM OCA].


==See Also==
==See Also==
*[[Potassium Channel|Potassium Channel]]
*[[Potassium Channel|Potassium Channel]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:020360102</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Rattus norvegicus]]
[[Category: Rattus norvegicus]]
[[Category: Dougherty, D A.]]
[[Category: Dougherty, D A]]
[[Category: Lee, A.]]
[[Category: Lee, A]]
[[Category: Limapichat, W.]]
[[Category: Limapichat, W]]
[[Category: MacKinnon, R.]]
[[Category: MacKinnon, R]]
[[Category: Tao, X.]]
[[Category: Tao, X]]
[[Category: Glycoprotein]]
[[Category: Glycoprotein]]
[[Category: Ion transport]]
[[Category: Ion transport]]

Revision as of 12:52, 9 December 2014

F233W mutant of the Kv2.1 paddle-Kv1.2 chimera channelF233W mutant of the Kv2.1 paddle-Kv1.2 chimera channel

Structural highlights

3lnm is a 4 chain structure with sequence from Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Gene:Ckbeta2, Kcnab2, Kcnb3 (Rattus norvegicus), Kcna2 (Rattus norvegicus)
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switchlike response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings, and x-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic "cap" and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations, the voltage sensor can be stabilized in different conformations, which enables a dissection of voltage sensor movements and their relation to ion channel opening.

A gating charge transfer center in voltage sensors.,Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R Science. 2010 Apr 2;328(5974):67-73. PMID:20360102[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R. A gating charge transfer center in voltage sensors. Science. 2010 Apr 2;328(5974):67-73. PMID:20360102 doi:328/5974/67

3lnm, resolution 2.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA