1ok6: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:1ok6.png|left|200px]]
==ORTHORHOMBIC CRYSTAL FORM OF AN ARCHAEAL FRUCTOSE 1,6-BISPHOSPHATE ALDOLASE==
<StructureSection load='1ok6' size='340' side='right' caption='[[1ok6]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1ok6]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermoproteus_tenax Thermoproteus tenax]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1OK6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1OK6 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ojx|1ojx]], [[1ok4|1ok4]]</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Fructose-bisphosphate_aldolase Fructose-bisphosphate aldolase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.1.2.13 4.1.2.13] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ok6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ok6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ok6 RCSB], [http://www.ebi.ac.uk/pdbsum/1ok6 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ok/1ok6_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Fructose-1,6-bisphosphate aldolase (FBPA) catalyzes the reversible cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate in the glycolytic pathway. FBPAs from archaeal organisms have recently been identified and characterized as a divergent family of proteins. Here, we report the first crystal structure of an archaeal FBPA at 1.9-A resolution. The structure of this 280-kDa protein complex was determined using single wavelength anomalous dispersion followed by 10-fold non-crystallographic symmetry averaging and refined to an R-factor of 14.9% (Rfree 17.9%). The protein forms a dimer of pentamers, consisting of subunits adopting the ubiquitous (betaalpha)8 barrel fold. Additionally, a crystal structure of the archaeal FBPA covalently bound to dihydroxyacetone phosphate was solved at 2.1-A resolution. Comparison of the active site residues with those of classical FBPAs, which share no significant sequence identity but display the same overall fold, reveals a common ancestry between these two families of FBPAs. Structural comparisons, furthermore, establish an evolutionary link to the triosephosphate isomerases, a superfamily hitherto considered independent from the superfamily of aldolases.


{{STRUCTURE_1ok6|  PDB=1ok6  |  SCENE=  }}
Crystal structure of an archaeal class I aldolase and the evolution of (betaalpha)8 barrel proteins.,Lorentzen E, Pohl E, Zwart P, Stark A, Russell RB, Knura T, Hensel R, Siebers B J Biol Chem. 2003 Nov 21;278(47):47253-60. Epub 2003 Aug 26. PMID:12941964<ref>PMID:12941964</ref>


===ORTHORHOMBIC CRYSTAL FORM OF AN ARCHAEAL FRUCTOSE 1,6-BISPHOSPHATE ALDOLASE===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_12941964}}
 
==About this Structure==
[[1ok6]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermoproteus_tenax Thermoproteus tenax]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1OK6 OCA].


==See Also==
==See Also==
*[[Aldolase|Aldolase]]
*[[Aldolase|Aldolase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:012941964</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Fructose-bisphosphate aldolase]]
[[Category: Fructose-bisphosphate aldolase]]
[[Category: Thermoproteus tenax]]
[[Category: Thermoproteus tenax]]

Revision as of 16:19, 28 September 2014

ORTHORHOMBIC CRYSTAL FORM OF AN ARCHAEAL FRUCTOSE 1,6-BISPHOSPHATE ALDOLASEORTHORHOMBIC CRYSTAL FORM OF AN ARCHAEAL FRUCTOSE 1,6-BISPHOSPHATE ALDOLASE

Structural highlights

1ok6 is a 10 chain structure with sequence from Thermoproteus tenax. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Related:1ojx, 1ok4
Activity:Fructose-bisphosphate aldolase, with EC number 4.1.2.13
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Fructose-1,6-bisphosphate aldolase (FBPA) catalyzes the reversible cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate in the glycolytic pathway. FBPAs from archaeal organisms have recently been identified and characterized as a divergent family of proteins. Here, we report the first crystal structure of an archaeal FBPA at 1.9-A resolution. The structure of this 280-kDa protein complex was determined using single wavelength anomalous dispersion followed by 10-fold non-crystallographic symmetry averaging and refined to an R-factor of 14.9% (Rfree 17.9%). The protein forms a dimer of pentamers, consisting of subunits adopting the ubiquitous (betaalpha)8 barrel fold. Additionally, a crystal structure of the archaeal FBPA covalently bound to dihydroxyacetone phosphate was solved at 2.1-A resolution. Comparison of the active site residues with those of classical FBPAs, which share no significant sequence identity but display the same overall fold, reveals a common ancestry between these two families of FBPAs. Structural comparisons, furthermore, establish an evolutionary link to the triosephosphate isomerases, a superfamily hitherto considered independent from the superfamily of aldolases.

Crystal structure of an archaeal class I aldolase and the evolution of (betaalpha)8 barrel proteins.,Lorentzen E, Pohl E, Zwart P, Stark A, Russell RB, Knura T, Hensel R, Siebers B J Biol Chem. 2003 Nov 21;278(47):47253-60. Epub 2003 Aug 26. PMID:12941964[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lorentzen E, Pohl E, Zwart P, Stark A, Russell RB, Knura T, Hensel R, Siebers B. Crystal structure of an archaeal class I aldolase and the evolution of (betaalpha)8 barrel proteins. J Biol Chem. 2003 Nov 21;278(47):47253-60. Epub 2003 Aug 26. PMID:12941964 doi:http://dx.doi.org/10.1074/jbc.M305922200

1ok6, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA