3maq: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Crystal structure of E.coli Pol II-normal DNA-dGTP ternary complex== | ||
<StructureSection load='3maq' size='340' side='right' caption='[[3maq]], [[Resolution|resolution]] 2.40Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3maq]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=3k5a 3k5a]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MAQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3MAQ FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DGT:2-DEOXYGUANOSINE-5-TRIPHOSPHATE'>DGT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | |||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=DOC:2,3-DIDEOXYCYTIDINE-5-MONOPHOSPHATE'>DOC</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3k57|3k57]], [[3k58|3k58]], [[3k59|3k59]], [[3k5l|3k5l]], [[3k5m|3k5m]], [[3k5n|3k5n]], [[3k5o|3k5o]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">b0060, dinA, JW0059, polB ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_DNA_polymerase DNA-directed DNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.7 2.7.7.7] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3maq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3maq OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3maq RCSB], [http://www.ebi.ac.uk/pdbsum/3maq PDBsum]</span></td></tr> | |||
</table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ma/3maq_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
E. coli DNA Pol II and eukaryotic Rev3 are B-family polymerases that can extend primers past a damaged or mismatched site when the high-fidelity replicative polymerases in the same family are ineffective. We report here the biochemical and structural properties of DNA Pol II that facilitate this translesion synthesis. DNA Pol II can extend primers past lesions either directly or by template skipping, in which small protein cavities outside of the active site accommodate looped-out template nucleotides 1 or 2 bp upstream. Because of multiple looping-out alternatives, mutation spectra of bypass synthesis are complicated. Moreover, translesion synthesis is enhanced by altered partitioning of DNA substrate between the polymerase active site and the proofreading exonuclease site. Compared to the replicative B family polymerases, DNA Pol II has subtle amino acid changes remote from the active site that allow it to replicate normal DNA with high efficiency yet conduct translesion synthesis when needed. | |||
Structural insight into translesion synthesis by DNA Pol II.,Wang F, Yang W Cell. 2009 Dec 24;139(7):1279-89. PMID:20064374<ref>PMID:20064374</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[DNA polymerase|DNA polymerase]] | *[[DNA polymerase|DNA polymerase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: DNA-directed DNA polymerase]] | [[Category: DNA-directed DNA polymerase]] | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Wang, F | [[Category: Wang, F]] | ||
[[Category: Yang, W | [[Category: Yang, W]] | ||
[[Category: Dna damage]] | [[Category: Dna damage]] | ||
[[Category: Dna repair]] | [[Category: Dna repair]] |
Revision as of 11:49, 9 December 2014
Crystal structure of E.coli Pol II-normal DNA-dGTP ternary complexCrystal structure of E.coli Pol II-normal DNA-dGTP ternary complex
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedE. coli DNA Pol II and eukaryotic Rev3 are B-family polymerases that can extend primers past a damaged or mismatched site when the high-fidelity replicative polymerases in the same family are ineffective. We report here the biochemical and structural properties of DNA Pol II that facilitate this translesion synthesis. DNA Pol II can extend primers past lesions either directly or by template skipping, in which small protein cavities outside of the active site accommodate looped-out template nucleotides 1 or 2 bp upstream. Because of multiple looping-out alternatives, mutation spectra of bypass synthesis are complicated. Moreover, translesion synthesis is enhanced by altered partitioning of DNA substrate between the polymerase active site and the proofreading exonuclease site. Compared to the replicative B family polymerases, DNA Pol II has subtle amino acid changes remote from the active site that allow it to replicate normal DNA with high efficiency yet conduct translesion synthesis when needed. Structural insight into translesion synthesis by DNA Pol II.,Wang F, Yang W Cell. 2009 Dec 24;139(7):1279-89. PMID:20064374[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|