1nir: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==OXYDIZED NITRITE REDUCTASE FROM PSEUDOMONAS AERUGINOSA== | ||
<StructureSection load='1nir' size='340' side='right' caption='[[1nir]], [[Resolution|resolution]] 2.15Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1nir]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Pseudomonas_aeruginosa Pseudomonas aeruginosa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1NIR OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1NIR FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=DHE:HEME+D'>DHE</scene>, <scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=OH:HYDROXIDE+ION'>OH</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene><br> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Nitrite_reductase_(NO-forming) Nitrite reductase (NO-forming)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.7.2.1 1.7.2.1] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1nir FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1nir OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1nir RCSB], [http://www.ebi.ac.uk/pdbsum/1nir PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ni/1nir_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
BACKGROUND: Nitrite reductase from Pseudomonas aeruginosa (NiR-Pa) is a dimer consisting of two identical 60 kDa subunits, each of which contains one c and one d1 heme group. This enzyme, a soluble component of the electron-transfer chain that uses nitrate as a source of energy, can be induced by the addition of nitrate to the bacterial growth medium. NiR-Pa catalyzes the reduction of nitrite (NO2-) to nitric oxide (NO); in vitro, both cytochrome c551 and azurin are efficient electron donors in this reaction. NiR is a key denitrification enzyme, which controls the rate of the production of toxic nitric oxide (NO) and ultimately regulates the release of NO into the atmosphere. RESULTS: The structure of the orthorhombic form (P2(1)2(1)2) of oxidized NiR-Pa was solved at 2.15 A resolution, using molecular replacement with the coordinates of the NiR from Thiosphaera pantotropha (NiR-Tp) as the starting model. Although the d1-heme domains are almost identical in both enzyme structures, the c domain of NiR-Pa is more like the classical class I cytochrome-c fold because it has His51 and Met88 as heme ligands, instead of His17 and His69 present in NiR-Tp. In addition, the methionine-bearing loop, which was displaced by His17 of the NiR-Tp N-terminal segment, is back to normal in our structure. The N-terminal residues (5/6-30) of NiR-Pa and NiR-Tp have little sequence identity. In Nir-Pa, this N-terminal segment of one monomer crosses the dimer interface and wraps itself around the other monomer. Tyr10 of this segment is hydrogen bonded to an hydroxide ion--the sixth ligand of the d1-heme Fe, whereas the equivalent residue in NiR-Tp, Tyr25, is directly bound to the Fe. CONCLUSIONS: Two ligands of hemes c and d1 differ between the two known NiR structures, which accounts for the fact that they have quite different spectroscopic and kinetic features. The unexpected domain-crossing by the N-terminal segment of NiR-Pa is comparable to that of 'domain swapping' or 'arm exchange' previously observed in other systems and may explain the observed cooperativity between monomers of dimeric NiR-Pa. In spite of having similar sequence and fold, the different kinetic behaviour and the spectral features of NiR-Pa and NiR-Tp are tuned by the N-terminal stretch of residues. A further example of this may come from another NiR, from Pseudomonas stutzeri, which has an N terminus very different from that of the two above mentioned NiRs. | |||
N-terminal arm exchange is observed in the 2.15 A crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa.,Nurizzo D, Silvestrini MC, Mathieu M, Cutruzzola F, Bourgeois D, Fulop V, Hajdu J, Brunori M, Tegoni M, Cambillau C Structure. 1997 Sep 15;5(9):1157-71. PMID:9331415<ref>PMID:9331415</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Nitric reductase|Nitric reductase]] | *[[Nitric reductase|Nitric reductase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Pseudomonas aeruginosa]] | [[Category: Pseudomonas aeruginosa]] | ||
[[Category: Cambillau, C.]] | [[Category: Cambillau, C.]] |
Revision as of 17:58, 28 September 2014
OXYDIZED NITRITE REDUCTASE FROM PSEUDOMONAS AERUGINOSAOXYDIZED NITRITE REDUCTASE FROM PSEUDOMONAS AERUGINOSA
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: Nitrite reductase from Pseudomonas aeruginosa (NiR-Pa) is a dimer consisting of two identical 60 kDa subunits, each of which contains one c and one d1 heme group. This enzyme, a soluble component of the electron-transfer chain that uses nitrate as a source of energy, can be induced by the addition of nitrate to the bacterial growth medium. NiR-Pa catalyzes the reduction of nitrite (NO2-) to nitric oxide (NO); in vitro, both cytochrome c551 and azurin are efficient electron donors in this reaction. NiR is a key denitrification enzyme, which controls the rate of the production of toxic nitric oxide (NO) and ultimately regulates the release of NO into the atmosphere. RESULTS: The structure of the orthorhombic form (P2(1)2(1)2) of oxidized NiR-Pa was solved at 2.15 A resolution, using molecular replacement with the coordinates of the NiR from Thiosphaera pantotropha (NiR-Tp) as the starting model. Although the d1-heme domains are almost identical in both enzyme structures, the c domain of NiR-Pa is more like the classical class I cytochrome-c fold because it has His51 and Met88 as heme ligands, instead of His17 and His69 present in NiR-Tp. In addition, the methionine-bearing loop, which was displaced by His17 of the NiR-Tp N-terminal segment, is back to normal in our structure. The N-terminal residues (5/6-30) of NiR-Pa and NiR-Tp have little sequence identity. In Nir-Pa, this N-terminal segment of one monomer crosses the dimer interface and wraps itself around the other monomer. Tyr10 of this segment is hydrogen bonded to an hydroxide ion--the sixth ligand of the d1-heme Fe, whereas the equivalent residue in NiR-Tp, Tyr25, is directly bound to the Fe. CONCLUSIONS: Two ligands of hemes c and d1 differ between the two known NiR structures, which accounts for the fact that they have quite different spectroscopic and kinetic features. The unexpected domain-crossing by the N-terminal segment of NiR-Pa is comparable to that of 'domain swapping' or 'arm exchange' previously observed in other systems and may explain the observed cooperativity between monomers of dimeric NiR-Pa. In spite of having similar sequence and fold, the different kinetic behaviour and the spectral features of NiR-Pa and NiR-Tp are tuned by the N-terminal stretch of residues. A further example of this may come from another NiR, from Pseudomonas stutzeri, which has an N terminus very different from that of the two above mentioned NiRs. N-terminal arm exchange is observed in the 2.15 A crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa.,Nurizzo D, Silvestrini MC, Mathieu M, Cutruzzola F, Bourgeois D, Fulop V, Hajdu J, Brunori M, Tegoni M, Cambillau C Structure. 1997 Sep 15;5(9):1157-71. PMID:9331415[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|