2ooc: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Crystal structure of Histidine Phosphotransferase ShpA (NP_419930.1) from Caulobacter crescentus at 1.52 A resolution== | ||
<StructureSection load='2ooc' size='340' side='right' caption='[[2ooc]], [[Resolution|resolution]] 1.52Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2ooc]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Caulobacter_vibrioides Caulobacter vibrioides]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OOC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2OOC FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">NP_419930.1, shpA, CC1114 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=155892 Caulobacter vibrioides])</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ooc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ooc OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ooc RCSB], [http://www.ebi.ac.uk/pdbsum/2ooc PDBsum], [http://www.topsan.org/Proteins/JCSG/2ooc TOPSAN]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/oo/2ooc_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Cell-cycle-regulated stalk biogenesis in Caulobacter crescentus is controlled by a multistep phosphorelay system consisting of the hybrid histidine kinase ShkA, the histidine phosphotransfer (HPt) protein ShpA, and the response regulator TacA. ShpA shuttles phosphoryl groups between ShkA and TacA. When phosphorylated, TacA triggers a downstream transcription cascade for stalk synthesis in an RpoN-dependent manner. The crystal structure of ShpA was determined to 1.52 A resolution. ShpA belongs to a family of monomeric HPt proteins that feature a highly conserved four-helix bundle. The phosphorylatable histidine His56 is located on the surface of the helix bundle and is fully solvent exposed. One end of the four-helix bundle in ShpA is shorter compared with other characterized HPt proteins, whereas the face that potentially interacts with the response regulators is structurally conserved. Similarities of the interaction surface around the phosphorylation site suggest that ShpA is likely to share a common mechanism for molecular recognition and phosphotransfer with yeast phosphotransfer protein YPD1 despite their low overall sequence similarity. | |||
Crystal structure of histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter crescentus.,Xu Q, Carlton D, Miller MD, Elsliger MA, Krishna SS, Abdubek P, Astakhova T, Burra P, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, McMullan D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Sefcovic N, Trame C, Trout CV, van den Bedem H, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA J Mol Biol. 2009 Jul 24;390(4):686-98. Epub 2009 May 18. PMID:19450606<ref>PMID:19450606</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Phosphotransferase|Phosphotransferase]] | *[[Phosphotransferase|Phosphotransferase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Caulobacter vibrioides]] | [[Category: Caulobacter vibrioides]] | ||
[[Category: JCSG, Joint Center for Structural Genomics.]] | [[Category: JCSG, Joint Center for Structural Genomics.]] |
Revision as of 13:00, 29 September 2014
Crystal structure of Histidine Phosphotransferase ShpA (NP_419930.1) from Caulobacter crescentus at 1.52 A resolutionCrystal structure of Histidine Phosphotransferase ShpA (NP_419930.1) from Caulobacter crescentus at 1.52 A resolution
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCell-cycle-regulated stalk biogenesis in Caulobacter crescentus is controlled by a multistep phosphorelay system consisting of the hybrid histidine kinase ShkA, the histidine phosphotransfer (HPt) protein ShpA, and the response regulator TacA. ShpA shuttles phosphoryl groups between ShkA and TacA. When phosphorylated, TacA triggers a downstream transcription cascade for stalk synthesis in an RpoN-dependent manner. The crystal structure of ShpA was determined to 1.52 A resolution. ShpA belongs to a family of monomeric HPt proteins that feature a highly conserved four-helix bundle. The phosphorylatable histidine His56 is located on the surface of the helix bundle and is fully solvent exposed. One end of the four-helix bundle in ShpA is shorter compared with other characterized HPt proteins, whereas the face that potentially interacts with the response regulators is structurally conserved. Similarities of the interaction surface around the phosphorylation site suggest that ShpA is likely to share a common mechanism for molecular recognition and phosphotransfer with yeast phosphotransfer protein YPD1 despite their low overall sequence similarity. Crystal structure of histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter crescentus.,Xu Q, Carlton D, Miller MD, Elsliger MA, Krishna SS, Abdubek P, Astakhova T, Burra P, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, McMullan D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Sefcovic N, Trame C, Trout CV, van den Bedem H, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA J Mol Biol. 2009 Jul 24;390(4):686-98. Epub 2009 May 18. PMID:19450606[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|