3nbt: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:3nbt.png|left|200px]]
==Crystal structure of trimeric cytochrome c from horse heart==
<StructureSection load='3nbt' size='340' side='right' caption='[[3nbt]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3nbt]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Equus_caballus Equus caballus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NBT OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3NBT FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3nbs|3nbs]]</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3nbt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3nbt OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3nbt RCSB], [http://www.ebi.ac.uk/pdbsum/3nbt PDBsum]</span></td></tr>
</table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nb/3nbt_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Cytochrome c (cyt c) is a stable protein that functions in a monomeric state as an electron donor for cytochrome c oxidase. It is also released to the cytosol when permeabilization of the mitochondrial outer membrane occurs at the early stage of apoptosis. For nearly half a century, it has been known that cyt c forms polymers, but the polymerization mechanism remains unknown. We found that cyt c forms polymers by successive domain swapping, where the C-terminal helix is displaced from its original position in the monomer and Met-heme coordination is perturbed significantly. In the crystal structures of dimeric and trimeric cyt c, the C-terminal helices are replaced by the corresponding domain of other cyt c molecules and Met80 is dissociated from the heme. The solution structures of dimeric, trimeric, and tetrameric cyt c were linear based on small-angle X-ray scattering measurements, where the trimeric linear structure shifted toward the cyclic structure by addition of PEG and (NH(4))(2)HPO(4). The absorption and CD spectra of high-order oligomers ( approximately 40 mer) were similar to those of dimeric and trimeric cyt c but different from those of monomeric cyt c. For dimeric, trimeric, and tetrameric cyt c, the DeltaH of the oligomer dissociation to monomers was estimated to be about -20 kcal/mol per protomer unit, where Met-heme coordination appears to contribute largely to DeltaH. The present results suggest that cyt c polymerization occurs by successive domain swapping, which may be a common mechanism of protein polymerization.


{{STRUCTURE_3nbt|  PDB=3nbt  |  SCENE=  }}
Cytochrome c polymerization by successive domain swapping at the C-terminal helix.,Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y Proc Natl Acad Sci U S A. 2010 Jul 6. PMID:20615990<ref>PMID:20615990</ref>


===Crystal structure of trimeric cytochrome c from horse heart===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_20615990}}
 
==About this Structure==
[[3nbt]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Equus_caballus Equus caballus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NBT OCA].


==See Also==
==See Also==
*[[Cytochrome c|Cytochrome c]]
*[[Cytochrome c|Cytochrome c]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:020615990</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Equus caballus]]
[[Category: Equus caballus]]
[[Category: Higuchi, Y.]]
[[Category: Higuchi, Y]]
[[Category: Hirota, S.]]
[[Category: Hirota, S]]
[[Category: Komori, H.]]
[[Category: Komori, H]]
[[Category: Taketa, M.]]
[[Category: Taketa, M]]
[[Category: Cytochrome c]]
[[Category: Cytochrome c]]
[[Category: Domain swapping]]
[[Category: Domain swapping]]
[[Category: Electron transport]]
[[Category: Electron transport]]
[[Category: Polymerization]]
[[Category: Polymerization]]

Revision as of 11:50, 9 December 2014

Crystal structure of trimeric cytochrome c from horse heartCrystal structure of trimeric cytochrome c from horse heart

Structural highlights

3nbt is a 6 chain structure with sequence from Equus caballus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Cytochrome c (cyt c) is a stable protein that functions in a monomeric state as an electron donor for cytochrome c oxidase. It is also released to the cytosol when permeabilization of the mitochondrial outer membrane occurs at the early stage of apoptosis. For nearly half a century, it has been known that cyt c forms polymers, but the polymerization mechanism remains unknown. We found that cyt c forms polymers by successive domain swapping, where the C-terminal helix is displaced from its original position in the monomer and Met-heme coordination is perturbed significantly. In the crystal structures of dimeric and trimeric cyt c, the C-terminal helices are replaced by the corresponding domain of other cyt c molecules and Met80 is dissociated from the heme. The solution structures of dimeric, trimeric, and tetrameric cyt c were linear based on small-angle X-ray scattering measurements, where the trimeric linear structure shifted toward the cyclic structure by addition of PEG and (NH(4))(2)HPO(4). The absorption and CD spectra of high-order oligomers ( approximately 40 mer) were similar to those of dimeric and trimeric cyt c but different from those of monomeric cyt c. For dimeric, trimeric, and tetrameric cyt c, the DeltaH of the oligomer dissociation to monomers was estimated to be about -20 kcal/mol per protomer unit, where Met-heme coordination appears to contribute largely to DeltaH. The present results suggest that cyt c polymerization occurs by successive domain swapping, which may be a common mechanism of protein polymerization.

Cytochrome c polymerization by successive domain swapping at the C-terminal helix.,Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y Proc Natl Acad Sci U S A. 2010 Jul 6. PMID:20615990[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y. Cytochrome c polymerization by successive domain swapping at the C-terminal helix. Proc Natl Acad Sci U S A. 2010 Jul 6. PMID:20615990

3nbt, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA