3tpd: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:3tpd.png|left|200px]]
==Structure of pHipA, monoclinic form==
<StructureSection load='3tpd' size='340' side='right' caption='[[3tpd]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3tpd]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3TPD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3TPD FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3dnt|3dnt]], [[3dnu|3dnu]], [[3dnv|3dnv]], [[3fbr|3fbr]], [[3hzi|3hzi]], [[3tpb|3tpb]], [[3tpe|3tpe]], [[3tpt|3tpt]], [[3tpv|3tpv]]</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3tpd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3tpd OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3tpd RCSB], [http://www.ebi.ac.uk/pdbsum/3tpd PDBsum]</span></td></tr>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
HipA is a bacterial serine/threonine protein kinase that phosphorylates targets, bringing about persistence and multidrug tolerance. Autophosphorylation of residue Ser150 is a critical regulatory mechanism of HipA function. Intriguingly, Ser150 is not located on the activation loop, as are other kinases; instead, it is in the protein core, where it forms part of the ATP-binding "P loop motif." How this buried residue is phosphorylated and regulates kinase activity is unclear. Here, we report multiple structures that reveal the P loop motif's exhibition of a remarkable "in-out" conformational equilibrium, which allows access to Ser150 and its intermolecular autophosphorylation. Phosphorylated Ser150 stabilizes the "out state," which inactivates the kinase by disrupting the ATP-binding pocket. Thus, our data reveal a mechanism of protein kinase regulation that is vital for multidrug tolerance and persistence, as kinase inactivation provides the critical first step in allowing dormant cells to revert to the growth phenotype and to reinfect the host.


{{STRUCTURE_3tpd|  PDB=3tpd  |  SCENE=  }}
Role of Unusual P Loop Ejection and Autophosphorylation in HipA-Mediated Persistence and Multidrug Tolerance.,Schumacher MA, Min J, Link TM, Guan Z, Xu W, Ahn YH, Soderblom EJ, Kurie JM, Evdokimov A, Moseley MA, Lewis K, Brennan RG Cell Rep. 2012 Sep 27;2(3):518-25. doi: 10.1016/j.celrep.2012.08.013. Epub 2012, Sep 20. PMID:22999936<ref>PMID:22999936</ref>


===Structure of pHipA, monoclinic form===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


{{ABSTRACT_PUBMED_22999936}}
==See Also==
 
*[[Serine/threonine protein kinase|Serine/threonine protein kinase]]
==About this Structure==
== References ==
[[3tpd]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3TPD OCA].
<references/>
__TOC__
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Non-specific serine/threonine protein kinase]]
[[Category: Non-specific serine/threonine protein kinase]]
[[Category: Brennan, R G.]]
[[Category: Brennan, R G]]
[[Category: Link, T.]]
[[Category: Link, T]]
[[Category: Schumacher, M A.]]
[[Category: Schumacher, M A]]
[[Category: Hipa]]
[[Category: Hipa]]
[[Category: Hipb]]
[[Category: Hipb]]

Revision as of 17:22, 9 December 2014

Structure of pHipA, monoclinic formStructure of pHipA, monoclinic form

Structural highlights

3tpd is a 1 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:Non-specific serine/threonine protein kinase, with EC number 2.7.11.1
Resources:FirstGlance, OCA, RCSB, PDBsum

Publication Abstract from PubMed

HipA is a bacterial serine/threonine protein kinase that phosphorylates targets, bringing about persistence and multidrug tolerance. Autophosphorylation of residue Ser150 is a critical regulatory mechanism of HipA function. Intriguingly, Ser150 is not located on the activation loop, as are other kinases; instead, it is in the protein core, where it forms part of the ATP-binding "P loop motif." How this buried residue is phosphorylated and regulates kinase activity is unclear. Here, we report multiple structures that reveal the P loop motif's exhibition of a remarkable "in-out" conformational equilibrium, which allows access to Ser150 and its intermolecular autophosphorylation. Phosphorylated Ser150 stabilizes the "out state," which inactivates the kinase by disrupting the ATP-binding pocket. Thus, our data reveal a mechanism of protein kinase regulation that is vital for multidrug tolerance and persistence, as kinase inactivation provides the critical first step in allowing dormant cells to revert to the growth phenotype and to reinfect the host.

Role of Unusual P Loop Ejection and Autophosphorylation in HipA-Mediated Persistence and Multidrug Tolerance.,Schumacher MA, Min J, Link TM, Guan Z, Xu W, Ahn YH, Soderblom EJ, Kurie JM, Evdokimov A, Moseley MA, Lewis K, Brennan RG Cell Rep. 2012 Sep 27;2(3):518-25. doi: 10.1016/j.celrep.2012.08.013. Epub 2012, Sep 20. PMID:22999936[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Schumacher MA, Min J, Link TM, Guan Z, Xu W, Ahn YH, Soderblom EJ, Kurie JM, Evdokimov A, Moseley MA, Lewis K, Brennan RG. Role of Unusual P Loop Ejection and Autophosphorylation in HipA-Mediated Persistence and Multidrug Tolerance. Cell Rep. 2012 Sep 27;2(3):518-25. doi: 10.1016/j.celrep.2012.08.013. Epub 2012, Sep 20. PMID:22999936 doi:http://dx.doi.org/10.1016/j.celrep.2012.08.013

3tpd, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA