1qjb: Difference between revisions
m Protected "1qjb" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==14-3-3 ZETA/PHOSPHOPEPTIDE COMPLEX (MODE 1)== | ||
<StructureSection load='1qjb' size='340' side='right' caption='[[1qjb]], [[Resolution|resolution]] 2.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1qjb]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=14ps 14ps]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QJB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1QJB FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1a37|1a37]], [[1a38|1a38]], [[1a4o|1a4o]], [[14ps|14ps]], [[1qja|1qja]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1qjb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qjb OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1qjb RCSB], [http://www.ebi.ac.uk/pdbsum/1qjb PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/qj/1qjb_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
We have solved the high-resolution X-ray structure of 14-3-3 bound to two different phosphoserine peptides, representing alternative substrate-binding motifs. These structures reveal an evolutionarily conserved network of peptide-protein interactions within all 14-3-3 isotypes, explain both binding motifs, and identify a novel intrachain phosphorylation-mediated loop structure in one of the peptides. A 14-3-3 mutation disrupting Raf signaling alters the ligand-binding cleft, selecting a different phosphopeptide-binding motif and different substrates than the wild-type protein. Many 14-3-3: peptide contacts involve a C-terminal amphipathic alpha helix containing a putative nuclear export signal, implicating this segment in both ligand and Crm1 binding. Structural homology between the 14-3-3 NES structure and those within I kappa B alpha and p53 reveals a conserved topology recognized by the Crm1 nuclear export machinery. | |||
Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding.,Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB Mol Cell. 1999 Aug;4(2):153-66. PMID:10488331<ref>PMID:10488331</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | |||
*[[14-3-3 protein|14-3-3 protein]] | |||
== | == References == | ||
[[ | <references/> | ||
__TOC__ | |||
== | </StructureSection> | ||
< | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Budman, J.]] | [[Category: Budman, J.]] |
Revision as of 09:50, 25 June 2014
14-3-3 ZETA/PHOSPHOPEPTIDE COMPLEX (MODE 1)14-3-3 ZETA/PHOSPHOPEPTIDE COMPLEX (MODE 1)
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe have solved the high-resolution X-ray structure of 14-3-3 bound to two different phosphoserine peptides, representing alternative substrate-binding motifs. These structures reveal an evolutionarily conserved network of peptide-protein interactions within all 14-3-3 isotypes, explain both binding motifs, and identify a novel intrachain phosphorylation-mediated loop structure in one of the peptides. A 14-3-3 mutation disrupting Raf signaling alters the ligand-binding cleft, selecting a different phosphopeptide-binding motif and different substrates than the wild-type protein. Many 14-3-3: peptide contacts involve a C-terminal amphipathic alpha helix containing a putative nuclear export signal, implicating this segment in both ligand and Crm1 binding. Structural homology between the 14-3-3 NES structure and those within I kappa B alpha and p53 reveals a conserved topology recognized by the Crm1 nuclear export machinery. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding.,Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB Mol Cell. 1999 Aug;4(2):153-66. PMID:10488331[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|