3vsd: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[ | ==Crystal Structure of the K127A Mutant of O-Phosphoserine Sulfhydrylase Complexed with External Schiff Base of Pyridoxal 5'-Phosphate with O-Acetyl-L-Serine== | ||
<StructureSection load='3vsd' size='340' side='right' caption='[[3vsd]], [[Resolution|resolution]] 2.09Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3vsd]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Aeropyrum_pernix Aeropyrum pernix]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3VSD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3VSD FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=OAS:O-ACETYLSERINE'>OAS</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1wkv|1wkv]], [[3vsa|3vsa]], [[3vsc|3vsc]]</td></tr> | |||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">APE1586, APE_1586, cysO ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=56636 Aeropyrum pernix])</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3vsd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3vsd OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3vsd RCSB], [http://www.ebi.ac.uk/pdbsum/3vsd PDBsum]</span></td></tr> | |||
<table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
O-Phosphoserine sulfhydrylase is a new enzyme found in a hyperthermophilic archaeon, Aeropyrum pernix K1. This enzyme catalyzes a novel cysteine synthetic reaction from O-phospho-l-serine and sulfide. The crystal structure of the enzyme was determined at 2.0A resolution using the method of multi-wavelength anomalous dispersion. A monomer consists of three domains, including an N-terminal domain with a new alpha/beta fold. The topology folds of the middle and C-terminal domains were similar to those of the O-acetylserine sulfhydrylase-A from Salmonella typhimurium and the cystathionine beta-synthase from human. The cofactor, pyridoxal 5'-phosphate, is bound in a cleft between the middle and C-terminal domains through a covalent linkage to Lys127. Based on the structure determined, O-phospho-l-serine could be rationally modeled into the active site of the enzyme. An enzyme-substrate complex model and a mutation experiment revealed that Arg297, unique to hyperthermophilic archaea, is one of the most crucial residues for O-phosphoserine sulfhydrylation activity. There are more hydrophobic areas and less electric charges at the dimer interface, compared to the S.typhimurium O-acetylserine sulfhydrylase. | |||
Three-dimensional structure of a new enzyme, O-phosphoserine sulfhydrylase, involved in l-cysteine biosynthesis by a hyperthermophilic archaeon, Aeropyrum pernix K1, at 2.0A resolution.,Oda Y, Mino K, Ishikawa K, Ataka M J Mol Biol. 2005 Aug 12;351(2):334-44. PMID:16005886<ref>PMID:16005886</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
< | |||
[[Category: Aeropyrum pernix]] | [[Category: Aeropyrum pernix]] | ||
[[Category: Ishikawa, K.]] | [[Category: Ishikawa, K.]] |
Revision as of 10:19, 5 June 2014
Crystal Structure of the K127A Mutant of O-Phosphoserine Sulfhydrylase Complexed with External Schiff Base of Pyridoxal 5'-Phosphate with O-Acetyl-L-SerineCrystal Structure of the K127A Mutant of O-Phosphoserine Sulfhydrylase Complexed with External Schiff Base of Pyridoxal 5'-Phosphate with O-Acetyl-L-Serine
Structural highlights
Publication Abstract from PubMedO-Phosphoserine sulfhydrylase is a new enzyme found in a hyperthermophilic archaeon, Aeropyrum pernix K1. This enzyme catalyzes a novel cysteine synthetic reaction from O-phospho-l-serine and sulfide. The crystal structure of the enzyme was determined at 2.0A resolution using the method of multi-wavelength anomalous dispersion. A monomer consists of three domains, including an N-terminal domain with a new alpha/beta fold. The topology folds of the middle and C-terminal domains were similar to those of the O-acetylserine sulfhydrylase-A from Salmonella typhimurium and the cystathionine beta-synthase from human. The cofactor, pyridoxal 5'-phosphate, is bound in a cleft between the middle and C-terminal domains through a covalent linkage to Lys127. Based on the structure determined, O-phospho-l-serine could be rationally modeled into the active site of the enzyme. An enzyme-substrate complex model and a mutation experiment revealed that Arg297, unique to hyperthermophilic archaea, is one of the most crucial residues for O-phosphoserine sulfhydrylation activity. There are more hydrophobic areas and less electric charges at the dimer interface, compared to the S.typhimurium O-acetylserine sulfhydrylase. Three-dimensional structure of a new enzyme, O-phosphoserine sulfhydrylase, involved in l-cysteine biosynthesis by a hyperthermophilic archaeon, Aeropyrum pernix K1, at 2.0A resolution.,Oda Y, Mino K, Ishikawa K, Ataka M J Mol Biol. 2005 Aug 12;351(2):334-44. PMID:16005886[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|