2ygk: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:2ygk.png|left|200px]]
==Crystal structure of the NurA nuclease from Sulfolobus solfataricus==
<StructureSection load='2ygk' size='340' side='right' caption='[[2ygk]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2ygk]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Sulfolobus_solfataricus Sulfolobus solfataricus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YGK OCA]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene><br>
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ygk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ygk OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ygk RCSB], [http://www.ebi.ac.uk/pdbsum/2ygk PDBsum]</span></td></tr>
<table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Helicase-nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.


<!--
Structural and functional insights into DNA-end processing by the archaeal HerA helicase-NurA nuclease complex.,Blackwood JK, Rzechorzek NJ, Abrams AS, Maman JD, Pellegrini L, Robinson NP Nucleic Acids Res. 2011 Dec 1. PMID:22135300<ref>PMID:22135300</ref>
The line below this paragraph, containing "STRUCTURE_2ygk", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_2ygk|  PDB=2ygk  |  SCENE=  }}


===Crystal structure of the NurA nuclease from Sulfolobus solfataricus===
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
 
</div>
 
== References ==
<!--
<references/>
The line below this paragraph, {{ABSTRACT_PUBMED_22135300}}, adds the Publication Abstract to the page
__TOC__
(as it appears on PubMed at http://www.pubmed.gov), where 22135300 is the PubMed ID number.
</StructureSection>
-->
{{ABSTRACT_PUBMED_22135300}}
 
==About this Structure==
[[2ygk]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Sulfolobus_solfataricus Sulfolobus solfataricus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YGK OCA].
 
==Reference==
<ref group="xtra">PMID:022135300</ref><references group="xtra"/>
[[Category: Sulfolobus solfataricus]]
[[Category: Sulfolobus solfataricus]]
[[Category: Abrams, A S.]]
[[Category: Abrams, A S.]]

Revision as of 10:52, 14 May 2014

Crystal structure of the NurA nuclease from Sulfolobus solfataricusCrystal structure of the NurA nuclease from Sulfolobus solfataricus

Structural highlights

2ygk is a 2 chain structure with sequence from Sulfolobus solfataricus. Full crystallographic information is available from OCA.
Ligands:
NonStd Res:
Activity:Glucokinase, with EC number 2.7.1.2
Resources:FirstGlance, OCA, RCSB, PDBsum

Publication Abstract from PubMed

Helicase-nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.

Structural and functional insights into DNA-end processing by the archaeal HerA helicase-NurA nuclease complex.,Blackwood JK, Rzechorzek NJ, Abrams AS, Maman JD, Pellegrini L, Robinson NP Nucleic Acids Res. 2011 Dec 1. PMID:22135300[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Blackwood JK, Rzechorzek NJ, Abrams AS, Maman JD, Pellegrini L, Robinson NP. Structural and functional insights into DNA-end processing by the archaeal HerA helicase-NurA nuclease complex. Nucleic Acids Res. 2011 Dec 1. PMID:22135300 doi:10.1093/nar/gkr1157

2ygk, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA