3f3m: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "3f3m" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:3f3m.png|left|200px]]
==Six Crystal Structures of Two Phosphopantetheine Adenylyltransferases Reveal an Alternative Ligand Binding Mode and an Associated Structural Change==
<StructureSection load='3f3m' size='340' side='right' caption='[[3f3m]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3f3m]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3F3M OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3F3M FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PPS:3-PHOSPHATE-ADENOSINE-5-PHOSPHATE+SULFATE'>PPS</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3f3i|3f3i]], [[3f3j|3f3j]], [[3f3l|3f3l]], [[3f3n|3f3n]], [[3f3o|3f3o]]</td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">coaD ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1280 Staphylococcus aureus])</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Pantetheine-phosphate_adenylyltransferase Pantetheine-phosphate adenylyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.3 2.7.7.3] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3f3m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3f3m OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3f3m RCSB], [http://www.ebi.ac.uk/pdbsum/3f3m PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f3/3f3m_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Bacterial phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway. It catalyzes the reversible transfer of an adenylyl group from ATP to 4'-phosphopantetheine (Ppant) to form dephospho-CoA (dPCoA) and pyrophosphate. Previous structural studies have revealed how several ligands are recognized by bacterial PPATs. ATP, ADP, Ppant and dPCoA bind to the same binding site in a highly similar manner, while CoA binds to a partially overlapping site in a different mode. To provide further structural insights into ligand binding, the crystal structure of Staphylococcus aureus PPAT was solved in a binary complex with 3'-phosphoadenosine 5'-phosphosulfate (PAPS). This study unexpectedly revealed a new mode of ligand binding to PPAT, thus providing potentially useful information for structure-based discovery of inhibitors of bacterial PPATs.


<!--
The structure of Staphylococcus aureus phosphopantetheine adenylyltransferase in complex with 3'-phosphoadenosine 5'-phosphosulfate reveals a new ligand-binding mode.,Lee HH, Yoon HJ, Kang JY, Park JH, Kim do J, Choi KH, Lee SK, Song J, Kim HJ, Suh SW Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Oct 1;65(Pt 10):987-91., Epub 2009 Sep 23. PMID:19851003<ref>PMID:19851003</ref>
The line below this paragraph, containing "STRUCTURE_3f3m", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_3f3m|  PDB=3f3m  |  SCENE=  }}


===Six Crystal Structures of Two Phosphopantetheine Adenylyltransferases Reveal an Alternative Ligand Binding Mode and an Associated Structural Change===
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
 
</div>
 
== References ==
<!--
<references/>
The line below this paragraph, {{ABSTRACT_PUBMED_19851003}}, adds the Publication Abstract to the page
__TOC__
(as it appears on PubMed at http://www.pubmed.gov), where 19851003 is the PubMed ID number.
</StructureSection>
-->
{{ABSTRACT_PUBMED_19851003}}
 
==About this Structure==
[[3f3m]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3F3M OCA].
 
==Reference==
<ref group="xtra">PMID:019851003</ref><references group="xtra"/>
[[Category: Pantetheine-phosphate adenylyltransferase]]
[[Category: Pantetheine-phosphate adenylyltransferase]]
[[Category: Staphylococcus aureus]]
[[Category: Staphylococcus aureus]]

Revision as of 12:41, 21 May 2014

Six Crystal Structures of Two Phosphopantetheine Adenylyltransferases Reveal an Alternative Ligand Binding Mode and an Associated Structural ChangeSix Crystal Structures of Two Phosphopantetheine Adenylyltransferases Reveal an Alternative Ligand Binding Mode and an Associated Structural Change

Structural highlights

3f3m is a 1 chain structure with sequence from Staphylococcus aureus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Related:3f3i, 3f3j, 3f3l, 3f3n, 3f3o
Gene:coaD (Staphylococcus aureus)
Activity:Pantetheine-phosphate adenylyltransferase, with EC number 2.7.7.3
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Bacterial phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway. It catalyzes the reversible transfer of an adenylyl group from ATP to 4'-phosphopantetheine (Ppant) to form dephospho-CoA (dPCoA) and pyrophosphate. Previous structural studies have revealed how several ligands are recognized by bacterial PPATs. ATP, ADP, Ppant and dPCoA bind to the same binding site in a highly similar manner, while CoA binds to a partially overlapping site in a different mode. To provide further structural insights into ligand binding, the crystal structure of Staphylococcus aureus PPAT was solved in a binary complex with 3'-phosphoadenosine 5'-phosphosulfate (PAPS). This study unexpectedly revealed a new mode of ligand binding to PPAT, thus providing potentially useful information for structure-based discovery of inhibitors of bacterial PPATs.

The structure of Staphylococcus aureus phosphopantetheine adenylyltransferase in complex with 3'-phosphoadenosine 5'-phosphosulfate reveals a new ligand-binding mode.,Lee HH, Yoon HJ, Kang JY, Park JH, Kim do J, Choi KH, Lee SK, Song J, Kim HJ, Suh SW Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Oct 1;65(Pt 10):987-91., Epub 2009 Sep 23. PMID:19851003[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Lee HH, Yoon HJ, Kang JY, Park JH, Kim do J, Choi KH, Lee SK, Song J, Kim HJ, Suh SW. The structure of Staphylococcus aureus phosphopantetheine adenylyltransferase in complex with 3'-phosphoadenosine 5'-phosphosulfate reveals a new ligand-binding mode. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Oct 1;65(Pt 10):987-91., Epub 2009 Sep 23. PMID:19851003 doi:10.1107/S1744309109036616

3f3m, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA