3si0: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:3si0.png|left|200px]]
==Structure of glycosylated human glutaminyl cyclase==
<StructureSection load='3si0' size='340' side='right' caption='[[3si0]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3si0]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SI0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3SI0 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=IMD:IMIDAZOLE'>IMD</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3si1|3si1]], [[3si2|3si2]]</td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">QPCT ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutaminyl-peptide_cyclotransferase Glutaminyl-peptide cyclotransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.2.5 2.3.2.5] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3si0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3si0 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3si0 RCSB], [http://www.ebi.ac.uk/pdbsum/3si0 PDBsum]</span></td></tr>
<table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Formation of N-terminal pyroglutamate (pGlu or pE) from glutaminyl or glutamyl precursors is catalyzed by glutaminyl cyclases (QC). As the formation of pGlu-amyloid has been linked with Alzheimer's disease, inhibitors of QCs are currently the subject of intense development. Here, we report three crystal structures of N-glycosylated mammalian QC from humans (hQC) and mice (mQC). Whereas the overall structures of the enzymes are similar to those reported previously, two surface loops in the neighborhood of the active center exhibit conformational variability. Furthermore, two conserved cysteine residues form a disulfide bond at the base of the active center that was not present in previous reports of hQC structure. Site-directed mutagenesis suggests a structure-stabilizing role of the disulfide bond. At the entrance to the active center, the conserved tryptophan residue, W(207), which displayed multiple orientations in previous structure, shows a single conformation in both glycosylated human and murine QCs. Although mutagenesis of W(207) into leucine or glutamine altered substrate conversion significantly, the binding constants of inhibitors such as the highly potent PQ50 (PBD150) were minimally affected. The crystal structure of PQ50 bound to the active center of murine QC reveals principal binding determinants provided by the catalytic zinc ion and a hydrophobic funnel. This study presents a first comparison of two mammalian QCs containing typical, conserved post-translational modifications.


<!--
Structures of Glycosylated Mammalian Glutaminyl Cyclases Reveal Conformational Variability near the Active Center.,Ruiz-Carrillo D, Koch B, Parthier C, Wermann M, Dambe T, Buchholz M, Ludwig HH, Heiser U, Rahfeld JU, Stubbs MT, Schilling S, Demuth HU Biochemistry. 2011 Jun 27. PMID:21671571<ref>PMID:21671571</ref>
The line below this paragraph, containing "STRUCTURE_3si0", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_3si0|  PDB=3si0  |  SCENE=  }}


===Structure of glycosylated human glutaminyl cyclase===
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
 
</div>
 
== References ==
<!--
<references/>
The line below this paragraph, {{ABSTRACT_PUBMED_21671571}}, adds the Publication Abstract to the page
__TOC__
(as it appears on PubMed at http://www.pubmed.gov), where 21671571 is the PubMed ID number.
</StructureSection>
-->
{{ABSTRACT_PUBMED_21671571}}
 
==About this Structure==
[[3si0]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SI0 OCA].
 
==Reference==
<ref group="xtra">PMID:021671571</ref><references group="xtra"/>
[[Category: Glutaminyl-peptide cyclotransferase]]
[[Category: Glutaminyl-peptide cyclotransferase]]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]

Revision as of 08:20, 5 June 2014

Structure of glycosylated human glutaminyl cyclaseStructure of glycosylated human glutaminyl cyclase

Structural highlights

3si0 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Related:3si1, 3si2
Gene:QPCT (Homo sapiens)
Activity:Glutaminyl-peptide cyclotransferase, with EC number 2.3.2.5
Resources:FirstGlance, OCA, RCSB, PDBsum

Publication Abstract from PubMed

Formation of N-terminal pyroglutamate (pGlu or pE) from glutaminyl or glutamyl precursors is catalyzed by glutaminyl cyclases (QC). As the formation of pGlu-amyloid has been linked with Alzheimer's disease, inhibitors of QCs are currently the subject of intense development. Here, we report three crystal structures of N-glycosylated mammalian QC from humans (hQC) and mice (mQC). Whereas the overall structures of the enzymes are similar to those reported previously, two surface loops in the neighborhood of the active center exhibit conformational variability. Furthermore, two conserved cysteine residues form a disulfide bond at the base of the active center that was not present in previous reports of hQC structure. Site-directed mutagenesis suggests a structure-stabilizing role of the disulfide bond. At the entrance to the active center, the conserved tryptophan residue, W(207), which displayed multiple orientations in previous structure, shows a single conformation in both glycosylated human and murine QCs. Although mutagenesis of W(207) into leucine or glutamine altered substrate conversion significantly, the binding constants of inhibitors such as the highly potent PQ50 (PBD150) were minimally affected. The crystal structure of PQ50 bound to the active center of murine QC reveals principal binding determinants provided by the catalytic zinc ion and a hydrophobic funnel. This study presents a first comparison of two mammalian QCs containing typical, conserved post-translational modifications.

Structures of Glycosylated Mammalian Glutaminyl Cyclases Reveal Conformational Variability near the Active Center.,Ruiz-Carrillo D, Koch B, Parthier C, Wermann M, Dambe T, Buchholz M, Ludwig HH, Heiser U, Rahfeld JU, Stubbs MT, Schilling S, Demuth HU Biochemistry. 2011 Jun 27. PMID:21671571[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Ruiz-Carrillo D, Koch B, Parthier C, Wermann M, Dambe T, Buchholz M, Ludwig HH, Heiser U, Rahfeld JU, Stubbs MT, Schilling S, Demuth HU. Structures of Glycosylated Mammalian Glutaminyl Cyclases Reveal Conformational Variability near the Active Center. Biochemistry. 2011 Jun 27. PMID:21671571 doi:10.1021/bi200249h

3si0, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA