Triose Phosphate Isomerase: Difference between revisions
Gregg Snider (talk | contribs) No edit summary |
Gregg Snider (talk | contribs) No edit summary |
||
Line 19: | Line 19: | ||
'''Glu165''' plays the role of the '''general base''' catalyst by abstracting a proton from the pro(''R'') position of carbon 1 of DHAP or the C-2 proton of GAP. However, the carboxylate group of Glutamate 165 alone does not possess the basicity to abstract a proton and requires | '''Glu165''' plays the role of the '''general base''' catalyst by abstracting a proton from the pro(''R'') position of carbon 1 of DHAP or the C-2 proton of GAP. However, the carboxylate group of Glutamate 165 alone does not possess the basicity to abstract a proton and requires | ||
<!--<scene name='Triose_Phosphate_Isomerase/His95/6'>His95</scene>--> | <!--<scene name='Triose_Phosphate_Isomerase/His95/6'>His95</scene>--> | ||
'''His95''', the '''general acid''', to donate a proton to stabilize the negative charge building up on C-2 carbonyl oxygen, effectively stabilizing the planar endediol(ate) intermediate | '''His95''', the '''general acid''', to donate a proton to stabilize the negative charge building up on C-2 carbonyl oxygen, effectively stabilizing the planar endediol(ate) intermediate. Lys12 and Asn11 also function to stabilize the negative charge which builds up on this intermediate. At this point in the mechanism, Glutamate 165 acts as a general acid by donating its proton to the neighboring C-2, while Histidine 95 now acts as a general base by abstracting a proton from the hydroxyl group of C-1. The final step in the reaction is the formation of the GAP isomer product while glutamate and histidine are returned to their original forms, regenerating the enzyme. In studies using tritium labeled DHAP, Knowles observed only ~ 6% intramolecular transfer of the <sup>3</sup>H label to the GAP product. In explaining this result, Knowles argued that the hydrogen bound to the Glu165 was in equilibrium with those in bulk solvent. Additionally, the reaction mechanism of the methylglyoxal forming enzyme methylglyoxal synthase (MGS) is believed to be similar to that of triosephosphate isomerase. Both enzymes utilize DHAP to form an enediol(ate) phosphate intermediate as the first step of their reaction pathways; however, the second catalytic step in the MGS reaction pathway features the elimination of phosphate and collapse of the enediol(ate) to form methylglyoxal rather then reprotonation to form the GAP isomer as seen in TPI.<ref>PMID:10368300</ref> | ||
===The Enediol(ate) Intermediate as a Kinetic Barrier=== | ===The Enediol(ate) Intermediate as a Kinetic Barrier=== | ||
Line 35: | Line 35: | ||
[[Image:TPImechanism2.png|thumb|right|500px| '''TPI Mechanism with LBHB between His95 and O2 of substrate''']] | [[Image:TPImechanism2.png|thumb|right|500px| '''TPI Mechanism with LBHB between His95 and O2 of substrate''']] | ||
More recently a series of NMR experiments carried out by Mildvan and co-workers have shed light onto an alternative "Criss-cross" mechanism involving a LBHB between the catalytic Glu165 and the O1 oxygen of the substrate. This mechanism stipulates the His95 side chain does not directly transfer protons, this rather being accomplished entirely by Glu165. Support for this mechanism was provided by Richard and coworkers who carried tritium labeling experiments demonstrating a significant amount of intramolecular transfer (49%) of the <sup>3</sup>H label from substrate (DHAP) to product (GAP)<ref>PMID:15709774</ref>. Using phosphoglycolohydroxamate (PGH), a mimic of the enediol(ate) intermediate, a 14.9 ppm chemical shift (6 ppm downfield) as well as a deuterium fractionation factor of 0.38 was observed with the TIM-PGH complex, corresponding to a highly deshielded proton involved in a LBHB between Glu165 and the hydroxamate oxygen of PGH. Conversely, the same NMR study found an additional hydrogen bond between the N-ε proton of His95 and the carbonyl oxygen of PGH; however, its chemical shift of 13.5 (0.4 ppm downfield from free enzyme) and fractionation factor of 0.71 indicated this was a strong H-bond, but not a LBHB.<ref>PMID:9748211</ref>. | More recently a series of NMR experiments carried out by Mildvan and co-workers have shed light onto an alternative "Criss-cross" mechanism involving a LBHB between the catalytic Glu165 and the O1 oxygen of the substrate. This mechanism stipulates the His95 side chain does not directly transfer protons, this rather being accomplished entirely by Glu165. Support for this mechanism was provided by Richard and coworkers who carried out tritium labeling experiments demonstrating a significant amount of intramolecular transfer (49%) of the <sup>3</sup>H label from substrate (DHAP) to product (GAP)<ref>PMID:15709774</ref>. Using phosphoglycolohydroxamate (PGH), a mimic of the enediol(ate) intermediate, a 14.9 ppm chemical shift (6 ppm downfield) as well as a deuterium fractionation factor of 0.38 was observed with the TIM-PGH complex, corresponding to a highly deshielded proton involved in a LBHB between Glu165 and the hydroxamate oxygen of PGH. Conversely, the same NMR study found an additional hydrogen bond between the N-ε proton of His95 and the carbonyl oxygen of PGH; however, its chemical shift of 13.5 (0.4 ppm downfield from free enzyme) and fractionation factor of 0.71 indicated this was a strong H-bond, but not a LBHB.<ref>PMID:9748211</ref>. | ||
[[Image:LBHB2_Glu.png|left|thumb|500x250px|'''LBHB between Glu165 and DHAP''']] The formation of the LBHB between Glu165 and O1 of the inhibitor PGH is due to the matching of p''K''as and the alternative mechanism suggests that Glu-165, in addition to its role in initially abstracting the proton from the substrate, may also shuttle protons to and from the oxygens in the intermediate. Also, the "criss-cross" mechanism implies that the by donating a normal hydrogen bond the role of His95 is to polarize the carbonyl oxygen and lower the p''K''a of PGH in order to facilitate subsequent proton abstraction<ref>PMID:9748211</ref>. It has been argued that that the LBHB formed between Glu165 and PGH is a consequence of using the inhibitor PGH, whose hydroxamate p''K''a of 9 better matches Glu165 then His95, and that the biological reaction would instead see the enediol forming a LHBH with His95, as mentioned above. Overall, the mechanism employed by TPI has yet to be completely solved and recent NMR studies involving both WT and mutant TPI enzymes have revealed contributions from both the "classic" and "criss-cross" mechanisms. | [[Image:LBHB2_Glu.png|left|thumb|500x250px|'''LBHB between Glu165 and DHAP''']] The formation of the LBHB between Glu165 and O1 of the inhibitor PGH is due to the matching of p''K''as and the alternative mechanism suggests that Glu-165, in addition to its role in initially abstracting the proton from the substrate, may also shuttle protons to and from the oxygens in the intermediate. Also, the "criss-cross" mechanism implies that the by donating a normal hydrogen bond the role of His95 is to polarize the carbonyl oxygen and lower the p''K''a of PGH in order to facilitate subsequent proton abstraction<ref>PMID:9748211</ref>. It has been argued that that the LBHB formed between Glu165 and PGH is a consequence of using the inhibitor PGH, whose hydroxamate p''K''a of 9 better matches Glu165 then His95, and that the biological reaction would instead see the enediol forming a LHBH with His95, as mentioned above. Overall, the mechanism employed by TPI has yet to be completely solved and recent NMR studies involving both WT and mutant TPI enzymes have revealed contributions from both the "classic" and "criss-cross" mechanisms. | ||