2pvw: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:


==Overview==
==Overview==
Inhibition of glutamate carboxypeptidase II (GCPII) has been shown to be, neuroprotective in multiple preclinical models in which dysregulated, glutamatergic transmission is implicated. Herein, we report crystal, structures of the human GCPII complexed with three glutamate, mimetics/derivatives, 2-(phosphonomethyl)pentanedioic acid (2-PMPA), quisqualic acid (QA), and L-serine O-sulfate (L-SOS), at 1.72, 1.62, and, 2.10 A resolution, respectively. Despite the structural differences, between the distal parts of the inhibitors, all three compounds share, similar binding modes in the pharmacophore (i.e., S1') pocket of GCPII, where they are stabilized by a combination of polar and van der Waals, interactions. The structural diversity of the distal parts of the, inhibitors leads to rearrangements of the S1' site that are necessary for, efficient interactions between the enzyme and an inhibitor. The set of, structures presented here, in conjunction with the available biochemical, data, illustrates a flexibility of the GCPII pharmacophore pocket and, highlights the structural features required for potent GCPII inhibition., These findings could facilitate the rational structure-based drug design, of new GCPII inhibitors in the future.
Inhibition of glutamate carboxypeptidase II (GCPII) has been shown to be neuroprotective in multiple preclinical models in which dysregulated glutamatergic transmission is implicated. Herein, we report crystal structures of the human GCPII complexed with three glutamate mimetics/derivatives, 2-(phosphonomethyl)pentanedioic acid (2-PMPA), quisqualic acid (QA), and L-serine O-sulfate (L-SOS), at 1.72, 1.62, and 2.10 A resolution, respectively. Despite the structural differences between the distal parts of the inhibitors, all three compounds share similar binding modes in the pharmacophore (i.e., S1') pocket of GCPII, where they are stabilized by a combination of polar and van der Waals interactions. The structural diversity of the distal parts of the inhibitors leads to rearrangements of the S1' site that are necessary for efficient interactions between the enzyme and an inhibitor. The set of structures presented here, in conjunction with the available biochemical data, illustrates a flexibility of the GCPII pharmacophore pocket and highlights the structural features required for potent GCPII inhibition. These findings could facilitate the rational structure-based drug design of new GCPII inhibitors in the future.
 
==Disease==
Known diseases associated with this structure: Myocardial infarcation, susceptibility to OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=602855 602855]]


==About this Structure==
==About this Structure==
Line 23: Line 26:
[[Category: prostate specific membrane antigen; metallopeptidase; folate hydrolase; glutamate carboxypeptidase ii; naaladase; 2-(phosphonomethyl)pentanedioic acid; 2-(pmpa)]]
[[Category: prostate specific membrane antigen; metallopeptidase; folate hydrolase; glutamate carboxypeptidase ii; naaladase; 2-(phosphonomethyl)pentanedioic acid; 2-(pmpa)]]


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Jan 23 14:08:36 2008''
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 18:33:29 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA